×

zbMATH — the first resource for mathematics

Splitting of composite functors. (Scindements de foncteurs composés.) (French) Zbl 1077.18001
The framework is the category of functors between vector spaces over a prime field. The symmetric power \(S^n\) is the functor obtained as the quotient of the tensor power by the action of the symmetric group (under permutation of factors). A functor \(B\) is said to be \(p\)-Boolean if it takes values in an algebra in which \(x^p= x\). The notion of polynomial and analytic functors leads to the Taylor filtration of a functor. The main result shows that the Taylor filtration of \(S^n\) splits after (right) composition with a \(p\)-Boolean functor \(S^n\circ B\). As applications of such splittings are computations of extensions appearing in the study of the cohomology of Eilenberg-MacLane spaces.
MSC:
18A25 Functor categories, comma categories
55P20 Eilenberg-Mac Lane spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Betley, S., Ext-groups for the composition of functors, (), 31-45 · Zbl 1057.18007
[2] Betley, S., Stable derived functors, the Steenrod algebra and homological algebra in the category of functors, Fund. math., 168, 279-293, (2001) · Zbl 0986.55008
[3] Breen, L., Extensions du groupe additif, Publ. inst. hautes études sci., 48, 39-125, (1978) · Zbl 0404.14018
[4] Carlisle, D.; Kuhn, N., Subalgebras of the Steenrod algebra and the action of matrices on truncated polynomial algebras, J. algebra, 121, 370-387, (1989) · Zbl 0691.55015
[5] Cartan, H.; Eilenberg, S., Homological algebra, (1956), Princeton Univ. Press · Zbl 0075.24305
[6] Franjou, V., Extensions entre puissances extérieures et entre puissances symétriques, J. algebra, 179, 2, 501-522, (1996) · Zbl 0841.55012
[7] Franjou, V.; Friedlander, E.; Scorichenko, A.; Suslin, A., General linear and functor cohomology over finite fields, Ann. of math., 150, 2, 663-728, (1999) · Zbl 0952.20035
[8] Franjou, V.; Lannes, J.; Schwartz, L., Autour de la cohomologie de mac Lane des corps finis, Invent. math., 115, 513-538, (1994) · Zbl 0798.18009
[9] Friedlander, E.; Suslin, A., Cohomology of finite group schemes over a field, Invent. math., 127, 2, 209-270, (1997) · Zbl 0945.14028
[10] Henn, H.-W.; Lannes, J.; Schwartz, L., Analytic functors, unstable algebras and cohomology of classifying spaces, (), 197-220
[11] Latapy, M., Partitions of an integer into powers, (), 215-228 · Zbl 1002.11074
[12] Pirashvili, T., Higher additivizations, Trudy tbiliss. mat. inst. razmadze akad. nauk gruzin. SSR, 91, 44-54, (1988), (in Russian) · Zbl 0705.18008
[13] Pirashvili, T., Dold – kan type theorem for γ-groups, Math. ann., 318, 277-298, (2000) · Zbl 0963.18006
[14] Piriou, L.; Schwartz, L., Extensions de foncteurs simples, K-theory, 15, 3, 269-291, (1998) · Zbl 0918.20036
[15] Richter, B., Taylor towers for γ-modules, Ann. inst. Fourier, 51, 4, 995-1023, (2001) · Zbl 0997.18008
[16] Schwartz, L., Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, (1994), Univ. of Chicago Press · Zbl 0871.55001
[17] Troesch, A., Cohomologie de compositions de puissances symétriques, C. R. acad. sci. Paris, 333, 509-512, (2001) · Zbl 0990.18009
[18] Troesch, A., Quelques calculs de cohomologie de compositions de puissances symétriques, Comm. algebra, 30, 7, 3351-3382, (2002) · Zbl 1005.18010
[19] A. Troesch, Cohomologie de compositions de puissances symétriques en caractéristique 2, Prépublication du LAGA (Paris 13), no. 2002-12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.