zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global synchronization of coupled delayed neural networks and applications to chaotic CNN models. (English) Zbl 1077.37506
Summary: This paper formulates the model and then studies its dynamics of a system of linearly and diffusively coupled identical delayed neural networks (DNNs), which is a generalization of delayed Hopfied neural networks (DHNNs) and delayed cellular neural networks (DCNNs). In particularly, a simple yet generic sufficient condition for global synchronization of such coupled DNNs is derived based on the Lyapunov functional methods and Hermitian matrix theory. It is shown that global synchronization of coupled DNNs is ensured by a suitable design of the coupling matrix and the inner linking matrix. Furthermore, the result is applied to some typical chaotic neural networks. Finally, numerical simulations are presented to demonstrate the effectiveness of the approach.

37D45Strange attractors, chaotic dynamics
Full Text: DOI