×

zbMATH — the first resource for mathematics

Probability, causality and the empirical world: a Bayes-de Finetti-Popper-Borel synthesis. (English) Zbl 1077.60003
Summary: This article expounds a philosophical approach to probability and causality: a synthesis of the personalist Bayesian views of de Finetti and Popper’s falsificationist programme. A falsification method for probabilistic or causal theories, based on “Borel criteria”, is described. It is argued that this minimalist approach, free of any distracting metaphysical inputs, provides the essential support required for the conduct and advance of Science.

MSC:
60A99 Foundations of probability theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aldous, D. J. (1981). Representations for partially exchangeable arrays of random variables. J. Multivariate Anal. 11 581–598. · Zbl 0474.60044
[2] Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions 53 370–418 [Reprinted as Bayes (1958).] · Zbl 1250.60007
[3] Bayes, T. (1958). An essay towards solving a problem in the doctrine of chances. Biometrika 45 293–315. [Reprint of Bayes (1763), with a biographical note by G. A. Barnard.] · Zbl 1250.60007
[4] Bernoulli, J. (1713). Ars Conjectandi . Thurnisius, Basel. · Zbl 0957.01032
[5] Blackwell, D. and Dubins, L. E. (1962). Merging of opinions with increasing information. Ann. Math. Statist. 33 882–886. · Zbl 0109.35704
[6] Borel, E. (1943). Les Probabilités et la vie . Presses Universitaires de France. [English translation published (1962) as Probabilities and Life . Dover, New York.]
[7] Consonni, G. and Dawid, A. P. (1985). Invariant normal Bayesian linear models and experimental designs. In Bayesian Statistics 2 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 629–643. North-Holland, Amsterdam. · Zbl 0671.62034
[8] Cournot, A. A. (1843). Exposition de la théorie des chances et des probabilités . Hachette, Paris. · Zbl 0174.51702
[9] Dawid, A. P. (1977). Invariant distributions and analysis of variance models. Biometrika 64 291–297. JSTOR: · Zbl 0362.62072
[10] Dawid, A. P. (1979). Conditional independence in statistical theory (with discussion). J. Roy. Statist. Soc. Ser. B 41 1–31. JSTOR: · Zbl 0408.62004
[11] Dawid, A. P. (1982a). Intersubjective statistical models. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.) 217–232. North-Holland, Amsterdam. · Zbl 0497.62005
[12] Dawid, A. P. (1982b). The well-calibrated Bayesian (with discussion). J. Amer. Statist. Assoc. 77 605–613. [Reprinted in Hamouda and Rowley (1997) 165–173.] JSTOR: · Zbl 0495.62005
[13] Dawid, A. P. (1984a). Causal inference from messy data. Discussion of “On the nature and discovery of structure,” by J. W. Pratt and R. Schlaifer. J. Amer. Statist. Assoc. 79 22–24. [Reprinted in Poirier (1994) 1 368–370.]
[14] Dawid, A. P. (1984b). Discussion of “Extreme point models in statistics,” by S. L. Lauritzen. Scand. J. Statist. 11 85.
[15] Dawid, A. P. (1984c). Present position and potential developments: Some personal views. Statistical theory. The prequential approach (with discussion). J. Roy. Statist. Soc. Ser. A 147 278–292. JSTOR: · Zbl 0557.62080
[16] Dawid, A. P. (1985a). Calibration-based empirical probability (with discussion). Ann. Statist. 13 1251–1285. [Reprinted in Hamouda and Rowley (1997) 174–208.] JSTOR: · Zbl 0587.60002
[17] Dawid, A. P. (1985b). The impossibility of inductive inference. Discussion of “Self-calibrating priors do not exist,” by D. Oakes. J. Amer. Statist. Assoc. 80 340–341. JSTOR: · Zbl 0576.62006
[18] Dawid, A. P. (1985c). Probability, symmetry and frequency. British J. Philos. Sci. 36 107–128. JSTOR: · Zbl 0588.62001
[19] Dawid, A. P. (1986a). A Bayesian view of statistical modelling. In Bayesian Inference and Decision Techniques (P. K. Goel and A. Zellner, eds.) 391–404. North-Holland, Amsterdam. · Zbl 0617.62004
[20] Dawid, A. P. (1986b). Probability forecasting. In Encyclopedia of Statistical Sciences 7 210–218. Wiley, New York.
[21] Dawid, A. P. (1988). Symmetry models and hypotheses for structured data layouts. J. Roy. Statist. Soc. Ser. B 50 1–34. JSTOR: · Zbl 0654.62056
[22] Dawid, A. P. (1997). Prequential analysis. In Encyclopedia of Statistical Sciences, Update Volume 1 464–470. Wiley, New York.
[23] Dawid, A. P. (2000). Causal inference without counterfactuals (with discussion). J. Amer. Statist. Assoc. 95 407–448. JSTOR: · Zbl 0999.62003
[24] Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. Internat. Statist. Rev. 70 161–189. [Corrigenda (2002) 70 437.] · Zbl 1215.62002
[25] Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with discussion). In Highly Structured Stochastic Systems (P. J. Green, N. L. Hjort and S. Richardson, eds.) 45–81. Oxford Univ. Press.
[26] Dawid, A. P. and Vovk, V. (1999). Prequential probability: Principles and properties. Bernoulli 5 125–162. · Zbl 0929.60001
[27] de Finetti, B. (1937). Foresight: Its logical laws, its subjective sources. Ann. Inst. H. Poincaré 7 1–68. [Translated by H. E. Kyburg in Kyburg and Smokler (1964) 93–158.] · JFM 63.1070.02
[28] de Finetti, B. (1974–1975). Theory of Probability 1 , 2 . Wiley, New York. [Italian original published (1970) by Einaudi, Torino.]
[29] Diaconis, P. and Freedman, D. (1980). de Finetti’s theorem for Markov chains. Ann. Probab. 8 115–130. JSTOR: · Zbl 0426.60064
[30] Goodman, N. (1954). Fact, Fiction, and Forecast . Athlone, London.
[31] Hamouda, O. F. and Rowley, J. C. R., eds. (1997). Probability Concepts, Dialogue and Beliefs . Elgar, Cheltenham, UK.
[32] Howson, C. and Urbach, P. (1993). Scientific Reasoning: The Bayesian Approach , 2nd ed. Open Court, La Salle, IL.
[33] Kalai, E. and Lehrer, E. (1993). Rational learning leads to Nash equilibrium. Econometrica 61 1019–1045. JSTOR: · Zbl 0793.90106
[34] Kyburg, H. E. and Smokler, H. E., eds. (1964). Studies in Subjective Probability . Wiley, New York. · Zbl 0133.39802
[35] Lauritzen, S. L. (1988). Extremal Families and Systems of Sufficient Statistics. Lecture Notes in Statist. 49 . Springer, New York. · Zbl 0681.62009
[36] Lauritzen, S. L. (2003). Rasch models with exchangeable rows and columns (with discussion). In Bayesian Statistics 7 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 215–232. Oxford Univ. Press.
[37] Lindley, D. V. (1965). An Introduction to Probability and Statistics from a Bayesian Viewpoint . Cambridge Univ. Press. ( 1 Part I: Probability, 2 Part II: Inference.) · Zbl 0123.34505
[38] Miller, R. I. and Sanchirico, C. W. (1999). The role of absolute continuity in “merging of opinions” and “rational learning.” Games Econom. Behav. 29 170–190. · Zbl 0996.91026
[39] Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica 29 315–335.
[40] Pearl, J. (2000). Causality . Cambridge Univ. Press. · Zbl 0959.68116
[41] Poirier, D. J., ed. (1994). The Methodology of Econometrics 1 , 2 . Elgar, Cheltenham, UK.
[42] Popper, K. R. (1959). The Logic of Scientific Discovery . Hutchinson, London. (German original published in 1934.) · Zbl 0083.24104
[43] Popper, K. R. (1982). The Open Universe . Hutchinson, London.
[44] Popper, K. R. (1983). Realism and the Aim of Science . Hutchinson, London.
[45] Ramsey, F. P. (1926). Truth and probability. In The Foundations of Mathematics and Other Logical Essays (R. B. Braithwaite, ed.) 58–100. Routledge and Kegan Paul, London. [Reprinted in Kyburg and Smokler (1964) 61–92.]
[46] Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Mulley, eds.) 113–159. NCSHR, U.S. Public Health Service.
[47] Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Ann. Statist. 6 34–58. JSTOR: · Zbl 0383.62021
[48] Savage, L. J. (1954). The Foundations of Statistics . Wiley, New York. · Zbl 0055.12604
[49] Schervish, M. J. (1985). Discussion of “Calibration-based empirical probability,” by A. P. Dawid. Ann. Statist. 13 1274–1282. JSTOR: · Zbl 0587.60002
[50] Seillier-Moiseiwitsch, F. and Dawid, A. P. (1993). On testing the validity of sequential probability forecasts. J. Amer. Statist. Assoc. 88 355–359. JSTOR: · Zbl 0771.62058
[51] Shafer, G. (1996). The Art of Causal Conjecture . MIT Press. · Zbl 0874.60003
[52] Shafer, G. and Vovk, V. G. (2001). Probability and Finance: It’s Only a Game . Wiley, New York. · Zbl 0985.91024
[53] Ville, J. (1939). Étude critique de la notion de collectif . Gauthier-Villars, Paris. · Zbl 0021.14601
[54] von Mises, R. (1939). Probability, Statistics and Truth . Hodge, London. [German original published (1928) by J. Springer.] · Zbl 0021.33703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.