zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of sampled-data nonlinear systems by receding horizon control via discrete-time approximations. (English) Zbl 1077.93044
Summary: Results on stabilizing receding horizon control of sampled-data nonlinear systems via their approximate discrete-time models are presented. The proposed receding horizon control is based on the solution of Bolza-type optimal control problems for the parametrized family of approximate discrete-time models. This paper investigates both situations when the sampling period $T$ is fixed and the integration parameter $h$ used in obtaining an approximate model can be chosen arbitrarily small, and when these two parameters coincide but can be adjusted arbitrarily. Sufficient conditions are established which guarantee that the controller that renders the origin to be asymptotically stable for the approximate model also stabilizes the exact discrete-time model for sufficiently small integration and/or sampling parameters.

MSC:
93D15Stabilization of systems by feedback
93C57Sampled-data control systems
93C10Nonlinear control systems
WorldCat.org
Full Text: DOI
References:
[1] Allgöwer, F.; Badgwell, T. A.; Qin, J. S.; Rawlings, J. B.; Wright, S. J.: Nonlinear predictive control and moving horizon estimation-an introductory overview. Advances in control, 391-449 (1999)
[2] Chen, H.; Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34, No. 10, 1205-1217 (1998) · Zbl 0947.93013
[3] Chen, W. H.; Ballance, D. J.; O’reilly, J.: Model predictive control of nonlinear systemscomputational burden and stability. IEE Proceedings--control theory and applications 147, No. 4, 387-394 (2000)
[4] De Nicolao, G.; Magni, L.; Scattolini, R.: Stabilizing receding horizon control of nonlinear time-varying systems. IEEE transactions on automatic control 43, No. 7, 1030-1036 (1998) · Zbl 0951.93063
[5] De Nicolao, G.; Magni, L.; Scattolini, R.: Stability and robustness of nonlinear receding horizon control. Nonlinear model predictive control, progress in systems and control theory, 3-22 (2000) · Zbl 0958.93512
[6] Fontes, F. A. C.C.: A general framework to design stabilizing nonlinear model predictive controllers. Systems and control letters 42, No. 2, 127-143 (2001) · Zbl 0985.93023
[7] Grimm, G.; Messina, M. J.; Teel, A. R.; Tuna, S.: Model predictive control when a local Lyapunov function is not available. Proceedings of American control conference 5, 4125-4130 (2003)
[8] Grüne, L.; Nešić, D.: Optimization-based stabilization of sampled-data nonlinear systems via their approximate discrete-time models. SIAM journal of control and optimization 42, No. 1, 98-122 (2003) · Zbl 1044.93053
[9] Gyurkovics, É.: Receding horizon control for the stabilization of nonlinear uncertain systems described by differential inclusions. Journal of mathematical systems, estimation and control 6, No. 3, 1-16 (1996) · Zbl 0858.93056
[10] Gyurkovics, É.: Receding horizon control via bolza-type optimization. Systems and control letters 35, No. 3, 195-200 (1998) · Zbl 0909.93064
[11] Gyurkovics, É.: Receding horizon H$\infty $control for nonlinear discrete-time systems. IEE Proceedings--control theory and applications 149, No. 6, 540-546 (2002)
[12] Hu, B.; Linnemann, A.: Toward infinite-horizon optimality in nonlinear model predictive control. IEEE transactions on automatic control 47, No. 4, 679-682 (2002)
[13] Isidori, A.: Nonlinear control systems. (1995) · Zbl 0878.93001
[14] Ito, K.; Kunisch, K.: Asymptotic properties of receding horizon optimal control problems. SIAM journal of control and optimization 40, No. 5, 1585-1610 (2002) · Zbl 1031.49033
[15] Jadababaie, A.; Hauser, J.: Unconstrained receding horizon control of nonlinear systems. IEEE transactions on automatic control 46, No. 5, 776-783 (2001) · Zbl 1009.93028
[16] Kreisselmeier, G.; Birkhölzer, T.: Numerical nonlinear regulator design. IEEE transactions on automatic control 9, No. 1, 33-46 (1994) · Zbl 0796.93034
[17] Laila, D. S.; Nešić, D.: Changing supply rates for input-output to state stable discrete-time nonlinear systems with applications. Automatica 39, No. 5, 821-835 (2003) · Zbl 1032.93073
[18] Magni, L., & Scattolini, R., 2002. State-feedback model predictive control with piecewise constant control for nonlinear continuous-time systems. Proceeding of the 41st IEEE conference on decision and control. Las Vegas, Nevada USA (pp. 4625-4630).
[19] Mayne, D. Q.; Michalska, H.: Receding horizon control of nonlinear systems. IEEE transactions on automatic control 35, No. 7, 814-824 (1990) · Zbl 0715.49036
[20] Mayne, D. Q.; Rawling, J. B.; Rao, C. V.; Scokaert, P. O. M.: Constrained model predictive controlstability and optimality. Automatica 36, No. 6, 789-814 (2000) · Zbl 0949.93003
[21] Nešić, D., & Loria, A. (2004). On uniform asymptotic stability of time-varying parameterized discrete-time cascades. IEEE TAC 49(6), 1026-1030.
[22] Nešić, D.; Teel, A. R.: Matrosov theorem for parameterized families of discrete-time systems. Automatica 40, No. 6, 1025-1034 (2004) · Zbl 1110.93038
[23] Nešić, D., & Teel, A. R. (2004b). A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE TAC 49(7), 1103-1122.
[24] Nešić, D.; Teel, A. R.; Kokotović, P. V.: Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems and control letters 38, No. 4,5, 259-270 (1999) · Zbl 0985.93034
[25] Nešić, D.; Teel, A. R.; Sontag, E. D.: Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems. Systems and control letters 38, No. 1, 49-60 (1999) · Zbl 0948.93057
[26] Parisini, T.; Sanguineti, M.; Zoppoli, R.: Nonlinear stabilization by receding-horizon neural regulators. International journal of control 70, No. 3, 341-362 (1998) · Zbl 0925.93823
[27] Stoer, J.; Bulirsch, R.: Introduction to numerical analysis. (1980) · Zbl 0423.65002