An algorithm for finding the Veech group of an origami. (English) Zbl 1078.14036

Let us fix a once-punctured torus \(E^{*}\). An origami \({\mathcal O}\) is provided by a unramified covering \(p:X \to E^{*}\), where \(X\) is an analytically finite Riemann surface. Equivalently, if \(F_{2}\) is a given free group of rank \(2\) in the conformal automorphism group of the hyperbolic plane \({\mathbb H}^{2}\) so that \({\mathbb H}^{2}/F_{2}\) is a once-punctured torus, then an origami is given by the choice of a finite index subgroup \(H\) of \(F_{2}\). This produces a holomorphic embedding of \({\mathbb H}^{2}\) (the Teichmüller space of \(E^{*}\)) into the Teichmüller space of \(X\). The stabilizer of such an embedding in the modular group of \(X\) is the Veech group \(\Gamma({\mathcal O})\) associated to the origami \({\mathcal O}\). In this article, the author provides an algorithm which permits to compute \(\Gamma({\mathcal O})\).


14H30 Coverings of curves, fundamental group
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)
20H10 Fuchsian groups and their generalizations (group-theoretic aspects)
37F99 Dynamical systems over complex numbers
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
Full Text: DOI arXiv Euclid EuDML


[1] Calta K., ”Veech Surfaces and Complete Periodicity in Genus 2.” (2002) · Zbl 1073.37032
[2] DOI: 10.1090/conm/201/02618 · doi:10.1090/conm/201/02618
[3] DOI: 10.1215/S0012-7094-03-11832-3 · Zbl 1038.37031 · doi:10.1215/S0012-7094-03-11832-3
[4] DOI: 10.1007/s002220100142 · Zbl 1019.32014 · doi:10.1007/s002220100142
[5] DOI: 10.1215/S0012-7094-00-10321-3 · Zbl 0965.30019 · doi:10.1215/S0012-7094-00-10321-3
[6] Hubert P., Israel Journal of Mathematics (2004)
[7] Hubert P., ”Non-congruence Subgroups in H(2).” (2004)
[8] DOI: 10.5802/aif.1829 · Zbl 0985.32008 · doi:10.5802/aif.1829
[9] Katok A., Mathematical Notes 18 pp 760– (1975)
[10] DOI: 10.1007/s000140050113 · Zbl 0967.37019 · doi:10.1007/s000140050113
[11] Leliévre S., ”Veech Surfaces Associated with Rational Billiards.” (2002)
[12] Lochak P., ”On Arithmetic Curves in the Moduli Space of Curves.” (2003) · Zbl 1094.14018
[13] Lyndon R. C., Combinatorial Group Theory. (1977) · Zbl 0368.20023
[14] DOI: 10.1090/S0894-0347-03-00432-6 · Zbl 1030.32012 · doi:10.1090/S0894-0347-03-00432-6
[15] Möller M., ”Teichmuller Curves, Galois Action and GT-relations.” (2003)
[16] Möller M., ”Variations of Hodge Structures of a Teichmueller Curve.” (2004)
[17] DOI: 10.1007/PL00013215 · Zbl 1192.37048 · doi:10.1007/PL00013215
[18] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions (1971) · Zbl 0221.10029
[19] DOI: 10.1090/S0273-0979-1988-15685-6 · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
[20] Thurston W., Princeton Mathematical Series, 35, in: Three Dimensional Geometry and Topology. Volume 1. (1997) · Zbl 0873.57001
[21] DOI: 10.1007/BF01388890 · Zbl 0676.32006 · doi:10.1007/BF01388890
[22] DOI: 10.1070/RM1996v051n05ABEH002993 · Zbl 0897.58029 · doi:10.1070/RM1996v051n05ABEH002993
[23] DOI: 10.1017/S0143385798117479 · Zbl 0915.58059 · doi:10.1017/S0143385798117479
[24] Wohlfahrt K., Illinois Journal of Mathematics 8 pp 529– (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.