×

zbMATH — the first resource for mathematics

On a singular set for the restriction of the characteristic map to a linear subspace of \(\mathcal M_n\). (English) Zbl 1078.15014
The author uses a topological language to give basic characterizations of the set of matrices \(\mathbf A \in \mathcal M_n\) (over an algebraically closed field \(\mathbf F\) of characteristic zero) such that the image \(\chi _{\mathbf A}(\mathcal L)\) is not dense in \(\mathbf F^n\), where \(\mathcal L\subseteq \mathcal M_n\) is a fixed linear subspace and \(\chi _{\mathbf A}\:\mathcal M_n \to \mathbf F^n\) is the characteristic map associated with \(\mathbf A\). The case \(n\in \{2,3\}\) is studied in more detail.
MSC:
15A30 Algebraic systems of matrices
15A18 Eigenvalues, singular values, and eigenvectors
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BYRNES C.-WANG X.: The additive inverse eigenvalue problem for Lie perturbation. SIAM J. Matrix Anal. Appl. 14 (1993), 113-117. · Zbl 0774.15006
[2] FRIEDLAND S.: Inverse eigenvalue problems. Linear Algebra Appl. 17 (1977), 15-51. · Zbl 0358.15007
[3] GANTMACHER F. R.: Théorie des matrices. Dunod, Paris, 1966. · Zbl 0136.00410
[4] HELTON W.-ROSENTHAL J.-WANG X.: Matrix extensions and eigenvalue completions, the generic case. Trans. Amer. Math. Soc. 349 (1997), 3401-3408. · Zbl 0891.15004
[5] KRAFT H.-P.: Geometrische Methoden in der Invariantentheorie. Friedr. Veiweg, Braunschweig, 1984. · Zbl 0569.14003
[6] LANG S.: Algebra. W. A. Benjamin, Inc., New York, 1970. · Zbl 0216.06001
[7] LOJASIEWICZ, ST.: Introduction to Complex Analytic Geometry. Birkhäuser, Basel, 1991. · Zbl 0747.32001
[8] SHAFAREVICH I. R.: Basic Algebraic Geometry. Springer-Verlag, Berlin-Heidelberg-New York, 1977. · Zbl 0362.14001
[9] SKRZYŃSKI M.: Irreducible algebraic sets of matrices with dominant restriction of the characteristic map. Math. Bohem. 128 (2003), 91-101. · Zbl 1016.15005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.