×

Basic examples and extensions of symmetric rings. (English) Zbl 1078.16030

A ring \(R\) with identity is called ‘symmetric’ if \(rst=0\) implies \(rts=0\) for all \(r,s,t\in R\). The authors discuss basic examples and extensions, and prove that a minimal noncommutative symmetric ring is of order 16 and is unique up to isomorphism. This ring is given in Example 2.5. They also construct more examples of symmetric rings and counterexamples to several naturally arising situations in the process.

MSC:

16U80 Generalizations of commutativity (associative rings and algebras)
16U20 Ore rings, multiplicative sets, Ore localization
16P10 Finite rings and finite-dimensional associative algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, D. D.; Camillo, V., Armendariz rings and Gaussian rings, Comm. Algebra, 26, 2265-2272 (1998) · Zbl 0915.13001
[2] Anderson, D. D.; Camillo, V., Semigroups and rings whose zero products commute, Comm. Algebra, 27, 2847-2852 (1999) · Zbl 0929.16032
[3] Armendariz, E. P., A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc., 18, 470-473 (1974) · Zbl 0292.16009
[4] Bell, H. E., Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2, 363-368 (1970) · Zbl 0191.02902
[5] Birkenmeier, G. F.; Heatherly, H. E.; Lee, E. K., Completely prime ideals and associated radicals, (Jain, S. K.; Rizvi, S. T., Proceedings of the Biennial Ohio State-Denison Conference, 1992 (1993), World Scientific: World Scientific Singapore, New Jersey, London, Hong Kong), 102-129 · Zbl 0853.16022
[6] Cohn, P. M., Reversible rings, Bull. London Math. Soc., 31, 641-648 (1999) · Zbl 1021.16019
[7] Eldridge, K. E., Orders for finite noncommutative rings with unity, Amer. Math. Monthly, 73, 376-377 (1966) · Zbl 0157.07901
[8] Goodearl, K. R.; Warfield, R. B., An Introduction to Noncommutative Noetherian Rings (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0679.16001
[9] Huh, C.; Lee, Y.; Smoktunowicz, A., Armendariz rings and semicommutative rings, Comm. Algebra, 30, 751-761 (2002) · Zbl 1023.16005
[10] Kim, N. K.; Lee, Y., Armendariz rings and reduced rings, J. Algebra, 223, 477-488 (2000) · Zbl 0957.16018
[11] Kim, N. K.; Lee, Y., Extensions of reversible rings, J. Pure Appl. Algebra, 185, 207-223 (2003) · Zbl 1040.16021
[12] Krempa, J., Some examples of reduced rings, Algebra Colloq., 3, 4, 289-300 (1996) · Zbl 0859.16019
[13] Krempa, J.; Niewieczerzal, D., Rings in which annihilators are ideals and their application to semigroup rings, Bull. Acad. Polon. Sci. Ser. Sci., Math. Astronom. Phys., 25, 851-856 (1977) · Zbl 0345.16017
[14] Kruse, R.; Price, D., Nilpotent Rings (1969), Gordon and Breach: Gordon and Breach New York · Zbl 0198.36102
[15] Lambek, J., Lectures on Rings and Modules (1966), Blaisdell: Blaisdell Waltham · Zbl 0143.26403
[16] Lambek, J., On the representation of modules by sheaves of factor modules, Canad. Math. Bull., 14, 359-368 (1971) · Zbl 0217.34005
[17] Marks, G., Reversible and symmetric rings, J. Pure Appl. Algebra, 174, 311-318 (2002) · Zbl 1046.16015
[18] Marks, G., A taxonomy of 2-primal rings, J. Algebra, 266, 494-520 (2003) · Zbl 1045.16001
[19] Rege, M. B.; Chhawchharia, S., Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73, 14-17 (1997) · Zbl 0960.16038
[20] Rowen, L. H., Ring Theory (1991), Academic Press, Inc.: Academic Press, Inc. San Diego · Zbl 0743.16001
[21] Shin, G., Prime ideals and sheaf representation of a pseudo symmetric rings, Trans. Amer. Math. Soc., 184, 43-60 (1973) · Zbl 0283.16021
[22] Stenström, B., Rings of Quotients (1975), Springer: Springer New York, Heidelberg, Berlin · Zbl 0296.16001
[23] Xue, W., On strongly right bounded finite rings, Bull. Austral. Math. Soc., 44, 353-355 (1991) · Zbl 0726.16016
[24] Xue, W., Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra, 20, 2777-2788 (1992) · Zbl 0789.16024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.