Marshall, Donald E.; Rohde, Steffen The Loewner differential equation and slit mappings. (English) Zbl 1078.30005 J. Am. Math. Soc. 18, No. 4, 763-778 (2005). The authors study the solutions of the Loewner differential equation \[ \partial_t F(z,t)=z\cdot p(z,t) \partial_z f(z,t), \] \(p(z,t)\) is analytic in \(z\) and has positive real part, which describes the evolution of a normalized Loewner chain \(f_t(z): D\rightarrow\Omega_t,\) \(D=\{z:| z| <1\}.\) More precisely, they investigate the geometry of the solutions in case of slit domains \(\Omega_t=\Omega\setminus \gamma[t,t_1],\) where \(\Omega\subseteq C\) is simply connected and \(\gamma\) parametrizes a simple arc that is contained in \(\Omega\) except for one end point \(\gamma(t_1)\in \partial\Omega.\) In this case the Loewner equation becomes \[ \partial_t f=z\frac{\lambda(t)+z}{\lambda(t)-z}\partial_z t, \] where \(\lambda(t)=f_t^{-1}(\gamma(t))\in \partial D.\) The main result of this paper is a sharp condition on \(\lambda\) that guarantees slit domains. Reviewer: Nikola Tuneski (Skopje) Cited in 56 Documents MSC: 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) 30C20 Conformal mappings of special domains 30C62 Quasiconformal mappings in the complex plane 30C30 Schwarz-Christoffel-type mappings Keywords:conformal maps; harmonic measure; quasiconformal maps; quasiarc; conformal welding; Loewner’s differential equation; Lipschitz continuous; Hölder continuous PDFBibTeX XMLCite \textit{D. E. Marshall} and \textit{S. Rohde}, J. Am. Math. Soc. 18, No. 4, 763--778 (2005; Zbl 1078.30005) Full Text: DOI References: [1] Lars V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. · Zbl 0138.06002 [2] Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137 – 152. · Zbl 0573.30014 · doi:10.1007/BF02392821 [3] L. Carleson and N. Makarov, Aggregation in the plane and Loewner’s equation, Comm. Math. Phys. 216 (2001), no. 3, 583 – 607. · Zbl 1042.82039 · doi:10.1007/s002200000340 [4] Clifford J. Earle and Adam Lawrence Epstein, Quasiconformal variation of slit domains, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3363 – 3372. · Zbl 0977.30008 [5] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. · Zbl 0514.30001 [6] José L. Fernández, Juha Heinonen, and Olli Martio, Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117 – 132. · Zbl 0677.30012 · doi:10.1007/BF02820475 [7] J. Garnett, D. E. Marshall, Harmonic Measure, Cambridge University Press (2005). · Zbl 1077.31001 [8] Frederick W. Gehring, Characteristic properties of quasidisks, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 84, Presses de l’Université de Montréal, Montreal, Que., 1982. · Zbl 0495.30018 [9] P. P. Kufarev, A remark on integrals of Löwner’s equation, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 655 – 656 (Russian). · Zbl 0029.03702 [10] R. Kühnau, Numerische Realisierung konformer Abbildungen durch ”Interpolation”, Z. Angew. Math. Mech. 63 (1983), no. 12, 631 – 637 (German, with English and Russian summaries). · Zbl 0529.30010 · doi:10.1002/zamm.19830631206 [11] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann. 89 (1923), 103-121. · JFM 49.0714.01 [12] J. Lind, A sharp condition for the Loewner equation to generate slits, to appear in Ann. Acad. Sci. Fenn. · Zbl 1069.30012 [13] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083 · doi:10.1007/BF02392619 [14] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8 (2001), no. 1-2, 13 – 23. , https://doi.org/10.4310/MRL.2001.v8.n1.a3 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8 (2001), no. 4, 401 – 411. · Zbl 1114.60316 · doi:10.4310/MRL.2001.v8.n4.a1 [15] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. · Zbl 0267.30016 [16] D. E. Marshall, S. Rohde, Convergence of the Zipper algorithm for conformal mapping, preprint available at http://www.math.washington.edu/\(\sim\)marshall/preprints/preprints.html · Zbl 1157.30006 [17] Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. · Zbl 0298.30014 [18] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. · Zbl 0762.30001 [19] S. Rohde, O. Schramm, Basic properties of SLE, arXiv:math.PR/0106036, to appear in Ann. Math. · Zbl 1081.60069 [20] Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221 – 288. · Zbl 0968.60093 · doi:10.1007/BF02803524 [21] Stanislav Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239 – 244 (English, with English and French summaries). · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.