zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt--Poincaré method. (English) Zbl 1078.34509
The author considers a modified Lindstedt-Poincaré method for the study of a Cauchy problem for a nonlinear oscillator with jumping discontinuities. The main idea of the method is the introduction of an artificial small parameter in the equation which allows asymptotic expansions of the solution and of the frequency. At least for the presented problem, the high efficiency of the method is shown.

MSC:
34A36Discontinuous equations
34E05Asymptotic expansions (ODE)
34A12Initial value problems for ODE, existence, uniqueness, etc. of solutions
34C15Nonlinear oscillations, coupled oscillators (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Bender, C. M.; Pinsky, K. S.; Simmons, L. M.: A new perturbative approach to nonlinear problems. J. math. Phys. 30, No. 7, 1447-1455 (1989) · Zbl 0684.34008
[2] Andrianov, I.; Awrejcewicz, J.: Construction of periodic solution to partial differential equations with nonlinear boundary conditions. Int. J. Nonlinear sci. Numer. simul. 1, No. 4 (2000) · Zbl 0977.35031
[3] He, J. H.: A note on delta-perturbation expansion method. Appl. math. Mech. 23, No. 6, 634-638 (2002) · Zbl 1029.34043
[4] He, J. H.: Homotopy perturbation technique. Comput. methods appl. Mech. eng. 178, No. 3--4, 257-262 (1999) · Zbl 0956.70017
[5] He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Nonlinear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[6] He, J. H.: Variational iteration method: a kind of nonlinear analytical technique: some examples. Int. J. Nonlinear mech. 34, No. 4, 699-708 (1999) · Zbl 05137891
[7] He, J. H.: Bookkeeping parameter in perturbation methods. Int. J. Nonlinear sci. Numer. simul. 2, No. 3, 257-264 (2001) · Zbl 1072.34508
[8] He, J. H.: Preliminary report on the energy balance for nonlinear oscillations. Mech. res. Commun. 29, No. 2--3, 107-111 (2002) · Zbl 1048.70011
[9] He, J. H.: Determination of limit cycles for strongly nonlinear oscillators. Phys. rev. Lett. 90, No. 17, 174301 (2003)
[10] He, J. H.: A review on some new recently developed nonlinear analytical techniques. Int. J. Nonlinear sci. Numer. simul. 1, No. 1, 51-70 (2000) · Zbl 0966.65056
[11] He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. math. Comput. 151, 287-292 (2004) · Zbl 1039.65052
[12] He, J. H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part I: Expansion of a constant. Int. J. Nonlinear mech. 37, No. 2, 309-314 (2002) · Zbl 1116.34320
[13] He, J. H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part II: A new transformation. Int. J. Nonlinear mech. 37, No. 2, 315-320 (2002) · Zbl 1116.34321
[14] He, J. H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part III: Double series expansion. Int. J. Nonlinear sci. Numer. simul. 2, No. 4, 317-320 (2001) · Zbl 1072.34507