zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux. (English) Zbl 1078.35046
Positive solutions of a quasilinear parabolic system on a halfline with a nonlinear boundary condition are studied. Results on global existence and nonexistence, on the blow-up rate and blow-up set are established.

35K50Systems of parabolic equations, boundary value problems (MSC2000)
35B33Critical exponents (PDE)
35K55Nonlinear parabolic equations
Full Text: DOI
[1] Deng, K.; Levine, H. A.: The role of critical exponents in blow-up theorems: the sequel. J. math. Anal. appl. 243, 85-126 (2000) · Zbl 0942.35025
[2] Dibenedetto, E.: Continuity of weak solutions to a general porous medium equation. Indiana univ. Math. J. 32, 83-118 (1983) · Zbl 0526.35042
[3] Escobedo, M.; Levine, H. A.: Critical blow-up and global existence numbers for a weakly coupled system of reaction--diffusion equations. Arch. rational mech. Anal. 129, 47-100 (1995) · Zbl 0822.35068
[4] Galaktionov, V. A.: Blow-up for quasilinear heat equations with critical Fujita’s exponents. Proc. roy. Soc. Edinburgh sect. A 124, 517-525 (1994) · Zbl 0808.35053
[5] Galaktionov, V. A.; Levine, H. A.: On critical Fujita exponents for heat equations with nonlinear flux boundary conditions on the boundary. Israel J. Math. 94, 125-146 (1996) · Zbl 0851.35067
[6] Giga, Y.; Kohn, R. V.: Asymptotically self-similar blow-up of semilinear heat equations. Comm. pure appl. Math. 38, 297-319 (1985) · Zbl 0585.35051
[7] Gilding, B. H.; Herrero, M. A.: Localization and blow-up of thermal waves in nonlinear heat conduction with peaking. Math. ann. 282, 223-242 (1988) · Zbl 0627.35048
[8] Hu, B.; Yin, H. M.: The profile near blow-up time for the solution of the heat equation with a nonlinear boundary condition. Trans. amer. Math. soc. 346, 117-135 (1994) · Zbl 0823.35020
[9] Kalashinikov, A. S.: Some problems of qualitative theory of nonlinear degenerate parabolic equations of second order. Usp. mat. Nauk 42, 135-176 (1987)
[10] Levine, H. A.: The role of critical exponents in blow up theorems. SIAM rev. 32, 262-288 (1990) · Zbl 0706.35008
[11] Lieberman, G. M.: Hölder continuity of gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Ann. math. Pura appl. 148, 77-99 (1987) · Zbl 0658.35050
[12] Lieberman, G. M.: Second order parabolic differential equations. (1996) · Zbl 0884.35001
[13] Pao, C. V.: Nonlinear parabolic and elliptic equations. (1992) · Zbl 0777.35001
[14] Quirós, F.; Rossi, J. D.: Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions. Indiana univ. Math. J. 50, 629-654 (2001) · Zbl 0994.35027
[15] Rossi, J. D.; Wolanski, N.: Global existence and nonexistence for a parabolic system with nonlinear boundary conditions. Differential integral equations 11, 179-190 (1998) · Zbl 1004.35012
[16] Wang, S.; Xie, C. H.; Wang, M. X.: The blow-up rate for a system of heat equations completely coupled in the boundary conditions. Nonlinear anal. 35, 389-398 (1999) · Zbl 0919.35062
[17] Zheng, S. N.: Nonexistence of positive solutions for a semilinear elliptic system and blow-up estimates for a reaction--diffusion system. J. math. Anal. appl. 232, 293-311 (1999) · Zbl 0935.35042
[18] Zheng, S. N.: Global existence and global non-existence of solutions to a reaction--diffusion system. Nonlinear anal. 39, 327-340 (2000) · Zbl 0955.35039