zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations. (English) Zbl 1078.35109
Summary: Exact travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations are obtained. The analysis rests mainly on the standard tanh method. The work emphasizes the need for a transformation formula for the case where the parameter $M$ is non-integer.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
37K40Soliton theory, asymptotic behavior of solutions
35C05Solutions of PDE in closed form
65M99Numerical methods for IVP of PDE
Software:
MACSYMA
WorldCat.org
Full Text: DOI
References:
[1] Wang, X. Y.: Exact and explicit solitary wave solutions for the generalized Fisher equation. Phys. lett. A 131, No. 4/5, 277-279 (1988)
[2] Jeffrey, A.; Mohamad, M. N. B.: Exact solutions to the KdV-Burgers equation. Wave motion 14, 369-375 (1991) · Zbl 0833.35124
[3] Wadati, M.: The exact solution of the modified Korteweg-de Vries equation. J. phys. Soc. jpn. 32, 1681-1687 (1972)
[4] Kivshar, Y. S.; Pelinovsky, D. E.: Self-focusing and transverse instabilities of solitary waves. Phys. rep. 331, 117-195 (2000)
[5] Hereman, W.; Takaoka, M.: Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J. phys. A 23, 4805-4822 (1990) · Zbl 0719.35085
[6] Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, No. 7, 650-654 (1992) · Zbl 1219.35246
[7] Malfliet, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. scr. 54, 563-568 (1996) · Zbl 0942.35034
[8] Malfliet, W.: The tanh method: II. Perturbation technique for conservative systems. Phys. scr. 54, 569-575 (1996) · Zbl 0942.35035
[9] Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. math. Comput. 154, No. 3, 713-723 (2004) · Zbl 1054.65106
[10] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[11] Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m,n)$ equations. Chaos solitons fract. 13, No. 2, 321-330 (2002) · Zbl 1028.35131
[12] Wazwaz, A. M.: Exact specific solutions with solitary patterns for the nonlinear dispersive $K(m,n)$ equations. Chaos solitons fract. 13, No. 1, 161-170 (2001)
[13] Wazwaz, A. M.: General compactons solutions for the focusing branch of the nonlinear dispersive $K(n,n)$ equations in higher dimensional spaces. Appl. math. Comput. 133, No. 2/3, 213-227 (2002) · Zbl 1027.35117
[14] Wazwaz, A. M.: General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive $K(n,n)$ equations in higher dimensional spaces. Appl. math. Comput. 133, No. 2/3, 229-244 (2002) · Zbl 1027.35118
[15] Wazwaz, A. M.: Compactons and solitary patterns structures for variants of the KdV and the KP equations. Appl. math. Comput. 139, No. 1, 37-54 (2003) · Zbl 1029.35200
[16] Wazwaz, A. M.: A construction of compact and noncompact solutions of nonlinear dispersive equations of even order. Appl. math. Comput. 135, No. 2-3, 411-424 (2003) · Zbl 1027.35121
[17] Wazwaz, A. M.: Compactons in a class of nonlinear dispersive equations. Math. comput. Modell. 37, No. 3/4, 333-341 (2003) · Zbl 1044.35078
[18] Wazwaz, A. M.: Distinct variants of the KdV equation with compact and noncompact structures. Appl. math. Comput. 150, 365-377 (2004) · Zbl 1039.35110
[19] Wazwaz, A. M.: Variants of the generalized KdV equation with compact and noncompact structures. Comput. math. Appl. 47, 583-591 (2004) · Zbl 1062.35120
[20] Wazwaz, A. M.: New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations. Chaos solitons fract. 22, 249-260 (2004) · Zbl 1062.35121