×

Surfaces with vanishing Möbius form in \(S^n\). (English) Zbl 1078.53012

Summary: An important Möbius invariant in the theory of Möbius surfaces in \(S^n\) is the so-called Möbius form. In this paper, we give a complete classification of surfaces in \(S^n\) with vanishing Möbius form under the Möbius transformation group.

MSC:

53A30 Conformal differential geometry (MSC2010)
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, C. P.: Moebius geometry of submanifolds in S n . Manuscripta Math., 96, 517–534 (1998) · Zbl 0912.53012 · doi:10.1007/s002290050080
[2] Li, H., Wang, C. P., Wu, F.: A Moebius characterization of Veronese surfaces in S n . Math. Ann., 319, 707–714 (2001) · Zbl 1031.53086 · doi:10.1007/PL00004455
[3] Willmore, T. J.: Surfaces in conformal geometry. Ann. Global Anal. Geom., 18, 255–264 (2000) · Zbl 0978.53025 · doi:10.1023/A:1006717506186
[4] Weiner, J.: On a problem of Chen, Willmore, et al.. Indiana Univ. Math. J., 27, 19–35 (1978) · Zbl 0368.53043 · doi:10.1512/iumj.1978.27.27003
[5] Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. arXiv. org/math. DG/0111169 · Zbl 1031.53026
[6] Bryant, R.: A duality theorem for Willmore surfaces. J. Differential Geom., 20, 23–53 (1984) · Zbl 0555.53002
[7] Castro, I., Urbano F.: Willmore surfaces of R 4 and the Whitney sphere. Ann. Global Anal. Geom., 19, 153–175 (2001) · Zbl 0991.53039 · doi:10.1023/A:1010720100464
[8] Li, H.: Willmore surfaces in S n . Ann. Global Anal. Geom., 21, 203–213 (2002) · Zbl 1008.53051 · doi:10.1023/A:1014759309675
[9] Montiel, S.: Willmore two-spheres in the four-sphere. Trans. AMS, 352, 4469–4486 (2000) · Zbl 0961.53035 · doi:10.1090/S0002-9947-00-02571-X
[10] Pinkall, U.: Hopf tori in S 3. Invent. Math., 8, 379–386 (1985) · Zbl 0585.53051 · doi:10.1007/BF01389060
[11] Hu, Z. J., Li, H.: Submanifolds with constant Moebius scalar curvature in S n . Manuscripta Math., 111, 287–302 (2003) · Zbl 1041.53007
[12] Li, H., Liu, H. L., Wang, C. P., Zhao, G. S.: Moebius isoparametric hypersurfaces in S n+1 with two distinct principal curvatures. Acta Math. Sinica, English Series, 18, 437–446 (2002) · Zbl 1030.53017 · doi:10.1007/s10114-002-0173-y
[13] Liu, H. L., Wang, C. P., Zhao, G. S.: Moebius isotropic submanifolds in S n . Tohoku Math. J., 53, 553–569 (2001) · Zbl 1014.53010 · doi:10.2748/tmj/1113247800
[14] Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 18, 380–385 (1966) · Zbl 0145.18601 · doi:10.2969/jmsj/01840380
[15] Bryant, R.: Minimal surfaces of constant curvature in S n . Trans. AMS, 290, 259–271 (1985) · Zbl 0572.53002
[16] Calabi, E.: Minimal immersions of surfaces in Euclidean spheres. J. Diff. Geom., 1, 111–125 (1967) · Zbl 0171.20504
[17] Wallach, N.: Extension of locally defined minimal immersions of spheres into spheres. Arch. Math., 21, 210–213 (1970) · Zbl 0193.22001 · doi:10.1007/BF01220905
[18] Kenmotsu, K.: On minimal immersions of R 2 into S. J. Math. Soc. Japan, 28, 182–191 (1976) · Zbl 0335.53048 · doi:10.2969/jmsj/02810182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.