×

On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. (English) Zbl 1078.60048

Summary: Existence, uniqueness and regularity of the trajectories of mild solutions of one-dimensional nonlinear stochastic fractional partial differential equations of order \(\alpha > 1\) containing derivatives of entire order and perturbed by space-time white noise are studied. The fractional derivative operator is defined by means of a generalized Riesz-Feller potential.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
26A33 Fractional derivatives and integrals
60G60 Random fields
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Angulo, J. M.; Ruiz-Medina, M. D.; Anh, V. V.; Grecksch, W., Fractional diffusion and fractional heat equation, Adv. Appl. Probab., 32, 1077-1099 (2000) · Zbl 0986.60077
[2] Bonaccorsi, S.; Tubaro, L., Mittag-Leffler’s function and stochastic linear Volterra equations of convolution type, Stochast. Anal. Appl., 21, 1, 61-78 (2003) · Zbl 1035.60067
[3] Dalang, R.; Mueller, C., Some nonlinear s.p.d.e.’s that are second order in time, Electron. J. Probab., 8, 1, 1-21 (2003) · Zbl 1013.60044
[4] L. Debbi, Explicit solutions of some fractional equations via stable subordinators, preprint.; L. Debbi, Explicit solutions of some fractional equations via stable subordinators, preprint. · Zbl 1127.35316
[5] L. Debbi, On some properties of a high fractional differential operator which is not in general selfadjoint, preprint.; L. Debbi, On some properties of a high fractional differential operator which is not in general selfadjoint, preprint. · Zbl 1143.26004
[6] L. Debbi, L. Abbaoui, Explicit solution of some fractional heat equations via Lévy motion, Maghreb Math. Rev., to appear.; L. Debbi, L. Abbaoui, Explicit solution of some fractional heat equations via Lévy motion, Maghreb Math. Rev., to appear. · Zbl 1085.47015
[7] W. Feller, Generalization of Marcel Riesz’ potentials and the semi-groups generated by them, Meddelanden Fran Lunds Universitets Matematiska Seminarium Supplementband 1952, pp. 73-81.; W. Feller, Generalization of Marcel Riesz’ potentials and the semi-groups generated by them, Meddelanden Fran Lunds Universitets Matematiska Seminarium Supplementband 1952, pp. 73-81.
[8] Gorenflo, R.; Mainardi, F., Random walk models for space-fractional diffusion processes, Fract. Calculus Appl. Anal., 1, 2, 167-191 (1998) · Zbl 0946.60039
[9] Komatsu, T., On the martingale problem for generators of stable processes with perturbations, Osaka J. Math., 21, 113-132 (1984) · Zbl 0535.60063
[10] Kotelenez, P., uniqueness and smoothness for a class of function valued stochastic partial differential equations, Stochast. Stochast. Reports, 41, 177-199 (1992) · Zbl 0766.60078
[11] Kylov, V. Yu., Some properties of the distribution corresponding to the equation \(\partial u / \partial t = (- 1)^{q + 1} \partial^{2 q} u / \partial t^{2 q}\), Soviet Math. Dokl., 1, 260-263 (1960)
[12] A. Le Mehaute, T. Machado, J.C. Trigeassou, J. Sabatier, Fractional differentiation and its applications, FDA’04, Proceedings of the first IFAC Workshop, vol. 2004-1, International Federation of Automatic Control, ENSEIRB, Bordeaux, France, July 19-21, 2004.; A. Le Mehaute, T. Machado, J.C. Trigeassou, J. Sabatier, Fractional differentiation and its applications, FDA’04, Proceedings of the first IFAC Workshop, vol. 2004-1, International Federation of Automatic Control, ENSEIRB, Bordeaux, France, July 19-21, 2004.
[13] X. Leoncini, G. Zaslavsky, Ets, stickiness, and anomalous transport, Phys. Rev. E 65 (2002) 046216-1-046216-16.; X. Leoncini, G. Zaslavsky, Ets, stickiness, and anomalous transport, Phys. Rev. E 65 (2002) 046216-1-046216-16. · Zbl 1244.76014
[14] E. Lukacs, Characteristic Functions, second ed., 1970, Griffin, 1960.; E. Lukacs, Characteristic Functions, second ed., 1970, Griffin, 1960. · Zbl 0087.33605
[15] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calculus Appl. Anal., 4, 2, 153-192 (2001) · Zbl 1054.35156
[16] Mueller, C., The heat equation with Lévy noise, Stochast. Proc. Appl., 74, 67-82 (1998) · Zbl 0934.60056
[17] V.V. Uchaikin, V.M. Zolotarev, Chance and stability, stable distributions and their applications, Mod. Probab. Statist. VSP. 1999.; V.V. Uchaikin, V.M. Zolotarev, Chance and stability, stable distributions and their applications, Mod. Probab. Statist. VSP. 1999.
[18] J.B. Walsh, An Introduction To Stochastic Partial Differential Equations, Lectures Notes in Mathematics, vol. 1180, Springer, Berlin, 1986, Ecole d’Été de Probabilités de Saint-Flour XIV-1984.; J.B. Walsh, An Introduction To Stochastic Partial Differential Equations, Lectures Notes in Mathematics, vol. 1180, Springer, Berlin, 1986, Ecole d’Été de Probabilités de Saint-Flour XIV-1984. · Zbl 0608.60060
[19] J.L. Wu, Fractal Burgers equation with stable Lévy noise, International Conference SPDE and Applications-VII, January 4-10, 2004.; J.L. Wu, Fractal Burgers equation with stable Lévy noise, International Conference SPDE and Applications-VII, January 4-10, 2004.
[20] J. Zabczyk, Symmetric solutions of semilinear stochastic equations, Lecture Notes in Mathematics, vol. 1390, Springer, Berlin, 1988, pp. 237-256.; J. Zabczyk, Symmetric solutions of semilinear stochastic equations, Lecture Notes in Mathematics, vol. 1390, Springer, Berlin, 1988, pp. 237-256.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.