×

Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. (English) Zbl 1078.62106

Summary: This article develops, and describes how to use, results concerning disintegrations of Poisson random measures. These results are fashioned as simple tools that can be tailor-made to address inferential questions arising in a wide range of Bayesian nonparametric and spatial statistical models. The Poisson disintegration method is based on the formal statement of two results concerning a Laplace functional change of measure and a Poisson Palm/Fubini calculus in terms of random partitions of the integers \(\{1,\dots,n\}\). The techniques are analogous to, but much more general than, techniques for the Dirichlet process and weighted gamma process developed by A. Y. Lo [Ann. Stat. 12, 351–357 (1984; Zbl 0557.62036)] and by A. Y. Lo and C.-S. Weng [Ann. Inst. Stat. Math. 41, 227–245 (1989; Zbl 0716.62043)]. In order to illustrate the flexibility of the approach, large classes of random probabilities measures and random hazards or intensities which can be expressed as functionals of Poisson random measures are described. We describe a unified posterior analysis of classes of discrete random probabilities which identifies and exploits features common to all these models.
The analysis circumvents many of the difficult issues involved in Bayesian nonparametric calculus, including a combinatorial component. This allows one to focus on the unique features of each process which are characterized via real valued functions \(h\). The applicability of the technique is further illustrated by obtaining explicit posterior expressions for Lévy-Cox moving average processes within the general setting of multiplicative intensity models. In addition, novel computational procedures, similar to efficient procedures developed for the Dirichlet process, are briefly discussed for these models.

MSC:

62M99 Inference from stochastic processes
60G57 Random measures
62G99 Nonparametric inference
62M30 Inference from spatial processes
62G05 Nonparametric estimation
62F15 Bayesian inference

References:

[1] Aalen, O. O. (1975). Statistical inference for a family of counting processes. Ann. Statist. 6 701–726. · Zbl 0389.62025 · doi:10.1214/aos/1176344247
[2] Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes . Springer, New York. · Zbl 0769.62061
[3] Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152–1174. JSTOR: · Zbl 0335.60034 · doi:10.1214/aos/1176342871
[4] Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 167–241. JSTOR: · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[5] Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353–355. · Zbl 0276.62010 · doi:10.1214/aos/1176342372
[6] Brix, A. (1999). Generalized Gamma measures and shot-noise Cox processes. Adv. in Appl. Probab. 31 929–953. · Zbl 0957.60055 · doi:10.1239/aap/1029955251
[7] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes . Springer, New York. · Zbl 0657.60069
[8] Doksum, K. A. (1974). Tailfree and neutral random probabilities and their posterior distributions. Ann. Probab. 2 183–201. · Zbl 0279.60097 · doi:10.1214/aop/1176996703
[9] Draghici, L. and Ramamoorthi, R. V. (2003). Consistency of Dykstra–Laud priors. Sankhyā 65 464–481. · Zbl 1193.62179
[10] Dykstra, R. L. and Laud, P. W. (1981). A Bayesian nonparametric approach to reliability. Ann. Statist. 9 356–367. JSTOR: · Zbl 0469.62077 · doi:10.1214/aos/1176345401
[11] Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. J. Amer. Statist. Assoc. 89 268–277. JSTOR: · Zbl 0791.62039 · doi:10.2307/2291223
[12] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret. Population Biology 3 87–112. · Zbl 0245.92009 · doi:10.1016/0040-5809(72)90035-4
[13] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems Ann. Statist. 1 209–230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360
[14] Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist. 18 1259–1294. JSTOR: · Zbl 0711.62033 · doi:10.1214/aos/1176347749
[15] Ishwaran, H. and James, L. F. (2003). Generalized weighted Chinese restaurant processes for species sampling mixture models. Statist. Sinica 13 1211–1235. · Zbl 1086.62036
[16] Ishwaran, H. and James, L. F. (2004). Computational methods for multiplicative intensity models using weighted gamma processes: Proportional hazards, marked point processes and panel count data. J. Amer. Statist. Assoc. 99 175–190. · Zbl 1089.62520 · doi:10.1198/016214504000000179
[17] Jacod, J. (1975). Multivariate point process: Predictable projection, Radon–Nikodym derivatives, representation of martingales. Z. Wahrsch. Verw. Gebiete 31 235–253. · Zbl 0302.60032 · doi:10.1007/BF00536010
[18] James, L. F. (2002). Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics. arXiv.org/math.PR/0205093.
[19] James, L. F. (2003). Bayesian calculus for Gamma processes with applications to semiparametric intensity models. Sankhyā 65 196–223. · Zbl 1192.62081
[20] James, L. F. (2005). Poisson calculus for spatial neutral to the right processes. Ann. Statist. · Zbl 1078.62106 · doi:10.1214/009053605000000336
[21] Kallenberg, O. (1986). Random Measures , 4th ed. Akademie-Verlag and Academic Press, Berlin and London. · Zbl 0345.60032
[22] Kallenberg, O. (2002). Foundations of Modern Probability. Probability and Its Applications , 2nd ed. Springer, New York. · Zbl 0996.60001
[23] Kingman, J. F. C. (1967). Completely random measures. Pacific J. Math. 21 59–78. · Zbl 0155.23503 · doi:10.2140/pjm.1967.21.59
[24] Kingman, J. F. C. (1975). Random discrete distributions (with discussion). J. Roy. Statist. Soc. Ser. B 37 1–22. JSTOR: · Zbl 0331.62019
[25] Kingman, J. F. C. (1978). Uses of exchangeability. Ann. Probab. 6 183–197. · Zbl 0374.60064 · doi:10.1214/aop/1176995566
[26] Kingman, J. F. C. (1993). Poisson Processes . Oxford Univ. Press. · Zbl 0771.60001
[27] Küchler, U. and Sørensen, M. (1997). Exponential Families of Stochastic Processes . Springer, New York. · Zbl 0882.60012
[28] Liu, J. S. (1996). Nonparametric hierarchichal Bayes via sequential imputations. Ann. Statist. 24 911–930. · Zbl 0880.62038 · doi:10.1214/aos/1032526949
[29] Lo, A. Y. (1982). Bayesian nonparametric statistical inference for Poisson point processes. Z. Wahrsch. Verw. Gebiete 59 55–66. · Zbl 0482.62078 · doi:10.1007/BF00575525
[30] Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351–357. JSTOR: · Zbl 0557.62036 · doi:10.1214/aos/1176346412
[31] Lo, A. Y., Brunner, L. J. and Chan, A. T. (1996). Weighted Chinese restaurant processes and Bayesian mixture model. Research report, Hong Kong Univ. Science and Technology.
[32] Lo, A. Y. and Weng, C.-S. (1989). On a class of Bayesian nonparametric estimates. II. Hazard rates estimates. Ann. Inst. Statist. Math. 41 227–245. · Zbl 0716.62043 · doi:10.1007/BF00049393
[33] Nieto-Barajas, L. E., Prünster, I. and Walker, S. G. (2004). Normalized random measures driven by increasing additive processes. Ann. Statist. 32 2343–2360. · Zbl 1069.62029 · doi:10.1214/009053604000000625
[34] Nieto-Barajas, L. E. and Walker, S. G. (2004). Bayesian nonparametric survival analysis via Lévy driven Markov processes. Statist. Sinica 14 1127–1146. · Zbl 1061.62170
[35] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21–39. · Zbl 0741.60037 · doi:10.1007/BF01205234
[36] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102 145–158. · Zbl 0821.60047 · doi:10.1007/BF01213386
[37] Pitman, J. (1996). Some developments of the Blackwell–MacQueen urn scheme. In Statistics, Probability and Game Theory (T. S. Ferguson, L. S. Shapley and J. B. MacQueen, eds.) 245–267. IMS, Hayward, CA. · doi:10.1214/lnms/1215453576
[38] Pitman, J. (2002). Combinatorial stochastic processes. Technical Report 621, Dept. Statistics, Univ. California, Berkeley. Lecture notes for Saint-Flour course, July 2002. Available at www.stat.berkeley.edu/ pitman.
[39] Pitman, J. (2003). Poisson–Kingman partitions. In Science and Statistics: A Festschrift for Terry Speed (D. R. Goldstein, ed.) 1–34. IMS, Beachwood, OH. · doi:10.1214/lnms/1215091133
[40] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31 560–585. · Zbl 1068.62034 · doi:10.1214/aos/1051027881
[41] Wolpert, R. L. and Ickstadt, K. (1988). Poisson/Gamma random field models for spatial statistics. Biometrika 85 251–267. JSTOR: · Zbl 0951.62082 · doi:10.1093/biomet/85.2.251
[42] Wolpert, R. L. and Ickstadt, K. (1998). Simulation of Levy random fields. Practical Nonparametric and Semiparametric Bayesian Statistics. Lecture Notes in Statist. 133 227–242. Springer, New York. · Zbl 0912.65118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.