×

zbMATH — the first resource for mathematics

Inverted finite elements: a new method for solving elliptic problems in unbounded domains. (English) Zbl 1078.65102
The author develops a new method for the solution of elliptic equations in an unbounded region. A number of theorems, propositions and lemmas is proved for the convergence and uniqueness of the solution. Finally numerical experiments are used for illustration.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] R.A. Adams , Compact imbeddings of weighted Sobolev spaces on unbounded domains . J. Differential Equations 9 ( 1971 ) 325 - 334 . Zbl 0209.15004 · Zbl 0209.15004
[2] F. Alliot and C. Amrouche , Problème de Stokes dans \(\mathbb{R}^n\) et espaces de Sobolev avec poids . C. R. Acad. Sci. Paris Sér. I Math. 325 ( 1997 ) 1247 - 1252 . Zbl 0894.35082 · Zbl 0894.35082
[3] C. Amrouche , V. Girault and J. Giroire , Weighted Sobolev spaces for Laplace’s equation in \(\mathbb{R}^n\) . J. Math. Pures Appl. (9) 73 ( 1994 ) 579 - 606 . Zbl 0836.35038 · Zbl 0836.35038
[4] C. Amrouche , V. Girault and J. Giroire , Dirichlet and Neumann exterior problems for the \(n\)-dimensional Laplace operator: an approach in weighted Sobolev spaces . J. Math. Pures Appl. (9) 76 ( 1997 ) 55 - 81 . Zbl 0878.35029 · Zbl 0878.35029
[5] J. Bérenger , A perfectly matched layer for absoption of electromagnetics waves . J. Comput. Physics 114 ( 1994 ) 185 - 200 . Zbl 0814.65129 · Zbl 0814.65129
[6] J. Bérenger , Perfectly matched layer for the fdtd solution of wave-structure interaction problems . IEEE Trans. Antennas Propagat. 44 ( 1996 ) 110 - 117 .
[7] P. Bettess and O.C. Zienkiewicz , Diffraction and refraction of surface waves using finite and infinite elements . Internat. J. Numer. Methods Engrg. 11 ( 1977 ) 1271 - 1290 . Zbl 0367.76014 · Zbl 0367.76014
[8] T.Z. Boulmezaoud , Vector potentials in the half-space of \(\mathbb{R}^3\) . C. R. Acad. Sci. Paris Sér. I Math. 332 ( 2001 ) 711 - 716 . Zbl 0981.35013 · Zbl 0981.35013
[9] T.Z. Boulmezaoud , On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces . Math. Methods Appl. Sci. 25 ( 2002 ) 373 - 398 . Zbl 0998.35037 · Zbl 0998.35037
[10] T.Z. Boulmezaoud , On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces . Math. Methods Appl. Sci. 26 ( 2003 ) 633 - 669 . Zbl pre01925341 · Zbl 1290.35034
[11] D.S. Burnett , A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion . J. Acoust. Soc. Amer. 96 ( 1994 ) 2798 - 2816 .
[12] C. Canuto , S.I. Hariharan , L. Lustman , Spectral methods for exterior elliptic problems . Numer. Math. 46 ( 1985 ) 505 - 520 . Article | Zbl 0548.65082 · Zbl 0548.65082
[13] Y. Choquet-Bruhat and D. Christodoulou , Elliptic systems in \(H_{s,\delta }\) spaces on manifolds which are Euclidean at infinity . Acta Math. 146 ( 1981 ) 129 - 150 . Zbl 0484.58028 · Zbl 0484.58028
[14] Ph.-G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978). MR 520174 | Zbl 0383.65058 · Zbl 0383.65058
[15] D.L. Colton and R. Kress , Integral equation methods in scattering theory . Pure Appl. Math. John Wiley & Sons Inc., New York ( 1983 ). MR 700400 | Zbl 0522.35001 · Zbl 0522.35001
[16] L. Demkowicz and F. Ihlenburg , Analysis of a coupled finite-infinite element method for exterior Helmholtz problems . Numer. Math. 88 ( 2001 ) 43 - 73 . Zbl 1013.65122 · Zbl 1013.65122
[17] J. Deny and J.L. Lions , Les espaces du type de Beppo Levi . Ann. Inst. Fourier, Grenoble 5 ( 1955 ) 305 - 370 , ( 1953 - 54 ). Numdam | Zbl 0065.09903 · Zbl 0065.09903
[18] K. Gerdes , A summary of infinite element formulations for exterior Helmholtz problems . Comput. Methods Appl. Mech. Engrg. 164 ( 1998 ) 95 - 105 . Zbl 0943.65126 · Zbl 0943.65126
[19] K. Gerdes and L. Demkowicz , Solution of \(3\)D-Laplace and Helmholtz equations in exterior domains using \(hp\)-infinite elements . Comput. Methods Appl. Mech. Engrg. 137 ( 1996 ) 239 - 273 . Zbl 0881.73126 · Zbl 0881.73126
[20] V. Girault , The divergence, curl and Stokes operators in exterior domains of \(\mathbb{R}^n\) . In Recent developments in theoretical fluid mechanics (Paseky, 1992), Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow 291 ( 1993 ) 34 - 77 . Zbl 0837.35115 · Zbl 0837.35115
[21] V. Girault , The Stokes problem and vector potential operator in three-dimensional exterior domains: an approach in weighted Sobolev spaces . Differential Integral Equations 7 ( 1994 ) 535 - 570 . Zbl 0831.35125 · Zbl 0831.35125
[22] J. Giroire , Étude de quelques problèmes aux limites extérieures et résolution par équations intégrales . Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris ( 1987 ).
[23] J. Giroire and J.-C. Nédélec , Numerical solution of an exterior Neumann problem using a double layer potential . Math. Comp. 32 ( 1978 ) 973 - 990 . Zbl 0405.65060 · Zbl 0405.65060
[24] L. Halpern , A spectral method for the Stokes problem in three-dimensional unbounded domains . Math. Comp. 70 ( 2001 ) 1417 - 1436 (electronic). Zbl 0971.35006 · Zbl 0971.35006
[25] B. Hanouzet , Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace . Rend. Sem. Mat. Univ. Padova 46 ( 1971 ) 227 - 272 . Numdam | Zbl 0247.35041 · Zbl 0247.35041
[26] G.H. Hardy , J.E. Littlewood and G. Pólya , Inequalities . Cambridge Mathematical Library. Cambridge University Press, Cambridge ( 1988 ). MR 944909 | Zbl 0634.26008 | JFM 60.0169.01 · Zbl 0634.26008
[27] L. Hörmander and J.L. Lions , Sur la complétion par rapport à une intégrale de Dirichlet . Math. Scand. 4 ( 1956 ) 259 - 270 . Zbl 0078.28003 · Zbl 0078.28003
[28] F. Ihlenburg , Finite element analysis of acoustic scattering, volume 132 of Applied Mathematical Sciences . Springer-Verlag, New York ( 1998 ). MR 1639879 | Zbl 0908.65091 · Zbl 0908.65091
[29] V.A. Kondratev , Boundary value problems for elliptic equations in domains with conical or angular points . Trudy Moskov. Mat. Obšč. 16 ( 1967 ) 209 - 292 . Zbl 0194.13405 · Zbl 0194.13405
[30] A. Kufner , Weighted Sobolev spaces . A Wiley-Interscience Publication. John Wiley & Sons Inc., New York ( 1985 ). MR 802206 | Zbl 0567.46009 · Zbl 0567.46009
[31] M. Laib and T.Z. Boulmezaoud , Some properties of weighted sobolev spaces in unbounded domains . In preparation.
[32] M.N. Le Roux , Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension \(2\) . RAIRO Anal. Numér. 11 ( 1977 ) 27 - 60 . Numdam | Zbl 0382.65055 · Zbl 0382.65055
[33] V.G. Maz’ya and B.A. Plamenevskii , Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points , in Elliptische Differentialgleichungen (Meeting, Rostock, 1977). Wilhelm-Pieck-Univ. Rostock ( 1978 ) 161 - 190 . Zbl 0429.35031 · Zbl 0429.35031
[34] J.-C. Nédélec , Curved finite element methods for the solution of singular integral equations on surfaces in \(\mathbb{R}^3\) . Comput. Methods Appl. Mech. Engrg. 8 ( 1976 ) 61 - 80 . Zbl 0333.45015 · Zbl 0333.45015
[35] J.-C. Nédélec . Résolution des Équations de Maxwell par Méthodes Intégrales . Cours de D.E.A. École Polytechnique, Paris ( 1998 ).
[36] V. Rokhlin , Solution of acoustic scattering problems by means of second kind integral equations . Wave Motion 5 ( 1983 ) 257 - 272 . Zbl 0522.73022 · Zbl 0522.73022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.