Mathematical analysis of HIV-1 dynamics in vivo. (English) Zbl 1078.92502

Summary: Mathematical models have proven valuable in understanding the dynamics of HIV-1 infection in vivo. By comparing these models to data obtained from patients undergoing antiretroviral drug therapy, it has been possible to determine many quantitative features of the interaction between HIV-1, the virus that causes AIDS, and the cells that are infected by the virus. The most dramatic finding has been that even though AIDS is a disease that occurs on a time scale of about 10 years, there are very rapid dynamical processes that occur on time scales of hours to days, as well as slower processes that occur on time scales of weeks to months. We show how dynamical modeling and parameter estimation techniques have uncovered these important features of HIV pathogenesis and impacted the way in which AIDS patients are treated with potent antiretroviral drugs.


92C50 Medical applications (general)
Full Text: DOI