Robust stability functionals of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functions. (English) Zbl 1078.93054

Summary: This paper considers the problem of robust stability for linear systems with a constant time-delay in the state and subject to real convex polytopic uncertainty. Both delay-independent and delay-dependent stability conditions are characterized by linear matrix inequalities which allow the use of parameter-dependent Lyapunov functionals to analyse the system stability against parameter perturbations, and therefore improve the conservativeness resulting from the single Lyapunov functional. In order to determine the maximum of time-delay within which the system remains stable, the problem can be cast into a generalized eigenvalue problem and solved by standard LMI solvers. Two examples are included to illustrate the proposed method.


93D09 Robust stability
93C23 Control/observation systems governed by functional-differential equations
Full Text: DOI


[1] AIKARIAN, P., TUAN, H. D. and BERNUSSOU, J. Analysis, eigenstructure assignment and H2 multi-channel synthesis with enhanced LMI characterizations. Proceedings of the IEEE Conference on Decision and Control. Sydney, NSW. pp.1489–1494. Australia
[2] BACHULIER, O., BERNUSSOL, J., DE OLIVEIRA, M. C. and GEROMEL, J. C. Parameter dependent Lyapunov control design: numerical evaluation. Proceedings of the IEEE Conference on Decision and Content. USA. pp.293–297.
[3] BOYD S., Linear Matric Inequalities in Systems and Control Theory (1994)
[4] DOI: 10.1109/9.273356 · Zbl 0796.93026 · doi:10.1109/9.273356
[5] DOI: 10.1109/9.412644 · Zbl 0834.93045 · doi:10.1109/9.412644
[6] DOI: 10.1016/S0024-3795(99)00086-5 · Zbl 0949.93063 · doi:10.1016/S0024-3795(99)00086-5
[7] DOI: 10.1016/S0167-6911(99)00035-3 · Zbl 0948.93058 · doi:10.1016/S0167-6911(99)00035-3
[8] DOI: 10.1002/(SICI)1099-1239(199808)8:10<907::AID-RNC352>3.0.CO;2-7 · Zbl 0919.93061 · doi:10.1002/(SICI)1099-1239(199808)8:10<907::AID-RNC352>3.0.CO;2-7
[9] GEROMEL, J. C., DE OLIVEIRA, M. C. and BERNUSSOU, J. Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions. Proceedings of the IEEE Conference on Decision and Control. Phoenix, AZ. pp.570–575. · Zbl 1022.93048
[10] DOI: 10.1016/S0024-3795(98)10123-4 · Zbl 0949.93064 · doi:10.1016/S0024-3795(98)10123-4
[11] DOI: 10.1109/9.911431 · Zbl 1056.93511 · doi:10.1109/9.911431
[12] HALE J., Introduction to Functional Differential Equations (1993) · Zbl 0787.34002
[13] DOI: 10.1109/9.887666 · Zbl 0989.93066 · doi:10.1109/9.887666
[14] DOI: 10.1016/S0016-0032(98)00042-8 · Zbl 0978.93068 · doi:10.1016/S0016-0032(98)00042-8
[15] DOI: 10.1080/002071799221172 · Zbl 0952.34057 · doi:10.1080/002071799221172
[16] DOI: 10.1109/9.280760 · Zbl 0815.93037 · doi:10.1109/9.280760
[17] DOI: 10.1016/S0005-1098(97)00082-4 · doi:10.1016/S0005-1098(97)00082-4
[18] MAIAUSEK M. R. SEK, IEEE Transactions on Automatic Control 41 pp 1363– (2000)
[19] NICULFSU, S.I., VERRIEST, E. I., DUGARD, L. and DION, J.M. Delay-dependent stability of linear systems with delayed state: An LMI approach. Proccedingi of the IEEE Conference on Decision and Control. pp.1495–1496.
[20] DOI: 10.1109/9.754838 · Zbl 0957.34069 · doi:10.1109/9.754838
[21] DOI: 10.1016/S0167-6911(99)00119-X · Zbl 0977.93067 · doi:10.1016/S0167-6911(99)00119-X
[22] DOI: 10.1109/9.917671 · Zbl 1031.93130 · doi:10.1109/9.917671
[23] SMITH O. J., ISA Journal 6 pp 28– (1959)
[24] DOI: 10.1016/S0005-1098(99)00025-4 · Zbl 1041.93515 · doi:10.1016/S0005-1098(99)00025-4
[25] TUAN, H. D., APKARIAN, P. and NGUYEN, T. Q. Robust and reduced-order filtering: new characterizationsand methods. Proceedings of the American Control Conference. Chicago, IL. pp.1327–1331.
[26] DOI: 10.1016/0167-6911(96)00039-4 · Zbl 0875.93110 · doi:10.1016/0167-6911(96)00039-4
[27] DOI: 10.1109/9.911428 · Zbl 1056.93598 · doi:10.1109/9.911428
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.