×

End-faithful spanning trees of countable graphs with prescribed sets of rays. (English) Zbl 1079.05508

Summary: We prove that a countable connected graph has an end-faithful spanning tree that contains a prescribed set of rays whenever this set is countable, and we show that this solution is, in a certain sense, the best possible. This improves a result of G. Hahn and J. Širáň.

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C38 Paths and cycles
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] H. Freudenthal: Über die Enden diskreter Räume und Gruppe. Comment. Math. Helv. 17 (1944), 1-38. · Zbl 0060.40007 · doi:10.1007/BF02566233
[2] G. Hahn and J. Širáň: Three remarks on end-faithfulness. Finite and Infinite Combinatorics in Sets and Logic, N. Sauer et al. (eds.), Kluwer, 1993, pp. 125-133. · Zbl 0845.05031
[3] R. Halin: Über unendliche Wege in Graphen. Math. Ann. 157 (1964), 125-137. · Zbl 0125.11701 · doi:10.1007/BF01362670
[4] H. Hopf: Enden offener Raüme und unendliche diskontinuierliche Gruppen. Comm. Math. Helv. 15 (1943), 27-32.
[5] N. Polat: Développements terminaux des graphes infinis I. Arbres maximaux coterminaux. Math. Nachr. 107 (1982), 283-314. · Zbl 0536.05043 · doi:10.1002/mana.19821070124
[6] N. Polat: Ends and multi-endings. I. J. Combin. Theory Ser. B 67 (1996), 86-110. · Zbl 0855.05051 · doi:10.1006/jctb.1996.0035
[7] N. Polat: Ends and multi-endings. II. J. Combin. Theory Ser. B 68 (1996), 56-86. · Zbl 0855.05052 · doi:10.1006/jctb.1996.0057
[8] P. Seymour and R. Thomas: An end-faithful spanning tree counterexample. Discrete Math. 95 (1991), 321-330. · Zbl 0763.05032 · doi:10.1016/0012-365X(91)90344-2
[9] J. Širáň: End-faithful forests and spanning trees in infinite graphs. Discrete Math. 95 (1991), 331-340. · Zbl 0763.05034 · doi:10.1016/0012-365X(91)90345-3
[10] C. Thomassen: Infinite connected graphs with no end-preserving spanning trees. J. Combin. Theory Ser. B 54 (1992), 322-324. · Zbl 0753.05030 · doi:10.1016/0095-8956(92)90059-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.