×

zbMATH — the first resource for mathematics

On a representation of the idele class group related to primes and zeros of \(L\)-functions. (English) Zbl 1079.11044
In the study of zeta and \(L\)-functions of curves over finite fields a critical step is the identification of the “numerator” of the function with the characteristic polynomial of an operator. This is usually done either in terms of the Jacobian or of étale cohomology. Neither of these exists in the number-field case and it has been a major problem for something like 60 years to find such an interpretation of the Hadamard product representation of such a function. As was first indicated by A. Weil one can interpret the Hadamard product representation in terms of a distributional identity (“explicit formulæof prime number theory”).
There have been several interpretations of these formulæin such a fashion as to have a cohomological interpretation; see, for example, C. R. Matthews, “Spectral analysis of the action of ideles on adèles” [J. Lond. Math. Soc. (2) 32, 392–398 (1985; Zbl 0614.12009)], D. Goldfeld, “Explicit formulae as trace formula” [in: Number Theory, Trace Formulas and Discrete Groups, Symp. in honor of A. Selberg, Oslo, Norway, 281–288 (1987; Zbl 0668.10050)], A. Connes, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function” [Sel. Math., New Ser. 5, 29–106 (1999; Zbl 0945.11015)].
The paper under review is devoted to examing this interpretation in more detail. The problem is that the underlying space is \(K_{\mathbb A}/K^{\times}\) where \(K\) denotes a number field. This is very singular and it is difficult to understand the function spaces on it. It follows Connes’ conceptions but instead of using Hilbert spaces, which assume the validity of the generalized Riemann Hypothesis, the author uses nuclear bornological spaces. This is in many ways a more natural setting for Weil’s formula (and for a number of other contexts). The author shows how it can be used to reprove the prime number/ideal theorem without reference to the theory of Dirichlet series.

MSC:
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
22D12 Other representations of locally compact groups
43A35 Positive definite functions on groups, semigroups, etc.
58B34 Noncommutative geometry (à la Connes)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] F. Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes \(\wp\)\nobreakdash-adiques , Bull. Soc. Math. France 89 (1961), 43–75. · Zbl 0128.35701 · numdam:BSMF_1961__89__43_0 · eudml:87007
[2] J.-F. Burnol, Sur les formules explicites, I: Analyse invariante , C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 423–428. · Zbl 0992.11064 · doi:10.1016/S0764-4442(00)01687-6
[3] –. –. –. –., On Fourier and zeta(s) , Forum Math. 16 (2004), 789–840. · Zbl 1077.11058 · doi:10.1515/form.2004.16.6.789
[4] A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function , Selecta Math. (N.S.) 5 (1999), 29–106. · Zbl 0945.11015 · doi:10.1007/s000290050042
[5] P. Deligne, La conjecture de Weil, II , Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252. · Zbl 0456.14014 · doi:10.1007/BF02684780 · numdam:PMIHES_1980__52__137_0 · eudml:103970
[6] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras , Lecture Notes in Math. 260 , Springer, Berlin, 1972. · Zbl 0244.12011 · doi:10.1007/BFb0070263
[7] N. Grønbæk, Morita equivalence for self-induced Banach algebras , Houston J. Math. 22 (1996), 109–140. · Zbl 0864.46026
[8] –. –. –. –., An imprimitivity theorem for representations of locally compact groups on arbitrary Banach spaces , Pacific J. Math. 184 (1998), 121–148.
[9] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires , Mem. Amer. Math. Soc. 1955 , no. 16. · Zbl 0123.30301
[10] H. Hogbe-Nlend and V. B. Moscatelli, Nuclear and Conuclear Spaces , North-Holland Math. Stud. 52 , North-Holland, Amsterdam, 1981. · Zbl 0467.46001
[11] B. Keller, “Derived categories and their uses” in Handbook of Algebra, Vol. 1 , North-Holland, Amsterdam, 1996, 671–701. · Zbl 0862.18001 · doi:10.1016/S1570-7954(96)80023-4
[12] R. Meyer, Generalized fixed point algebras and square-integrable groups actions , J. Funct. Anal. 186 (2001), 167–195. · Zbl 1003.46036 · doi:10.1006/jfan.2001.3795
[13] –. –. –. –., “Bornological versus topological analysis in metrizable spaces” in Banach Algebras and Their Applications , Contemp. Math. 363 , Amer. Math. Soc., Providence, 2004, 249–278. · Zbl 1081.46004
[14] –. –. –. –., Smooth group representations on bornological vector spaces , Bull. Sci. Math. 128 (2004), 127–166. · Zbl 1037.22011 · doi:10.1016/j.bulsci.2003.12.002
[15] ——–, The cyclic homology and K\nobreakdash-theory of certain adelic crossed products , · arxiv.org
[16] A. Neeman, The derived category of an exact category , J. Algebra 135 (1990), 388–394. · Zbl 0753.18004 · doi:10.1016/0021-8693(90)90296-Z
[17] S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function , Cambridge Stud. Adv. Math. 14 , Cambridge Univ. Press, Cambridge, 1988. · Zbl 0641.10029
[18] D. Quillen, “Higher algebraic \(K\)-theory, I” in Algebraic \(K\)-Theory, I: Higher \(K\)-Theories (Seattle, 1972) , Lecture Notes in Math. 341 , Springer, Berlin, 1973, 85–147. · Zbl 0292.18004
[19] J. T. Tate, “Fourier analysis in number fields and Hecke’s zeta-functions” in Algebraic Number Theory (Brighton, U.K., 1965) , Thompson, Washington, D.C., 1967, 305–347.
[20] A. Weil, Sur les “formules explicites” de la théorie des nombres premiers , Comm. Sém. Math. Univ. Lund 1952 , 252–265. · Zbl 0049.03205
[21] –. –. –. –., Sur les formules explicites de la théorie des nombres , Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18.; English translation in Math. USSR-Izv. 6 , no. 1 (1972), 1–17. · Zbl 0245.12010
[22] ——–, Basic Number Theory , Classics Math., Springer, Berlin, 1995. · Zbl 0823.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.