×

Set-valued discrete chaos. (English) Zbl 1079.37024

When studying the chaotic dynamics of individual members, the following natural questions arise: How does individual chaos affect the chaotic behaviour of the ecosystem dynamics as a whole? And vice versa? Here, the author gives a characterization of topological transitivity for collective dynamics in terms of the weakly mixing property for individual dynamics.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37A25 Ergodicity, mixing, rates of mixing
37N25 Dynamical systems in biology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Auslander, J.; Yorke, J. A., Interval maps, factors of maps, and chaos, Tohoku Math J, 32, 177-188 (1980) · Zbl 0448.54040
[2] Banks, J., Topological mapping properties defined by digraphs, Discr Cont Dyn Syst, 5, 83-92 (1999) · Zbl 0957.54020
[3] Barnsley, M. F., Fractals everywhere (1988), Academic Press · Zbl 0691.58001
[5] Bès, J.; Peris, A., Hereditarily hypercyclic operators, J Funct Anal, 167, 94-112 (1999) · Zbl 0941.47002
[6] Birkhoff, G. D., Démonstration d’un théoréme elémentaire sur les fonctions entiéres, C R Acad Sci Paris, 189, 473-475 (1929) · JFM 55.0192.07
[7] Bonet, J.; Martı́nez-Giménez, F.; Peris, A., Linear chaos on Fréchet spaces, Int J Bifurcat Chaos, 13, 1649-1655 (2003) · Zbl 1079.47008
[8] Devaney, R. L., An introduction to chaotic dynamical systems (1989), Addison-Wesley · Zbl 0695.58002
[9] Fedeli, A., On chaotic set-valued discrete dynamical systems, Chaos, Solitons & Fractals, 23, 1381-1384 (2005) · Zbl 1079.37021
[10] Furstenberg, H., Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, Syst Theory, 1, 1-49 (1967) · Zbl 0146.28502
[11] Gethner, R. M.; Shapiro, J. H., Universal vectors for operators on spaces of holomorphic functions, Proc Am Math Soc, 100, 281-288 (1987) · Zbl 0618.30031
[12] Godefroy, G.; Shapiro, J. H., Operators with dense, invariant, cyclic vector manifolds, J Funct Anal, 98, 229-269 (1991) · Zbl 0732.47016
[13] Grosse-Erdmann, K. G., Universal families and hypercyclic operators, Bull Am Math Soc, 36, 345-381 (1999) · Zbl 0933.47003
[14] Grosse-Erdmann, K. G., Recent developments in hypercyclicity, Rev R Acad Cienc Ser A Mat., 97, 273-286 (2003) · Zbl 1076.47005
[15] Herzog, G.; Lemmert, R., On universal subsets of Banach spaces, Math Z, 229, 615-619 (1998) · Zbl 0928.47003
[17] Román-Flores, H., A note on transitivity in set-valued discrete systems, Chaos, Solitons & Fractals, 17, 99-104 (2003) · Zbl 1098.37008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.