zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Composition followed by differentiation between Bergman and Hardy spaces. (English) Zbl 1079.47031
Let $\phi$ be a non-constant analytic self map on the unit disc $D$ of the complex plane. The purpose of this note is to characterize maps $\phi$ for which the operator $(D C_{\phi})(f)=(f \circ \phi)'$ is bounded or compact between weighted Bergman spaces $A^p_{\alpha}$ and $A^q_{\beta}$, $1 \leq p \leq q$, $\alpha, \beta > -1$. This operator is bounded if and only if a related measure satisfies a Carleson type condition. A result of Luecking which uses Khinchine’s inequality plays an important role in the proofs. The methods developed in the paper are also utilized to study the operator $C_{\phi} \circ D$.

47B33Composition operators
47B38Operators on function spaces (general)
30H05Bounded analytic functions
Full Text: DOI
[1] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions , New York, 1994. · Zbl 0814.47040
[2] P.L. Duren, Theory of $H^p$ spaces , Academic Press, New York, 1970. · Zbl 0215.20203
[3] P. Koosis, Introduction to $H^p$ spaces , Cambridge Univ. Press, Cambridge, 1980. · Zbl 0435.30001
[4] D.H. Luecking, Embedding theorems for spaces of analytic functions via Khinchine’s inequality , Mich. Math. J. 40 (1993), 333-358. · Zbl 0801.46019 · doi:10.1307/mmj/1029004756
[5] --------, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives , Amer. J. Math. 107 (1985), 85-111. JSTOR: · Zbl 0584.46042 · doi:10.2307/2374458 · http://links.jstor.org/sici?sici=0002-9327%28198502%29107%3A1%3C85%3AFARCIF%3E2.0.CO%3B2-P&origin=euclid
[6] B.D. MacCluer, Composition operators on $S^p$ , Houston J. Math. 13 (1987), 245-254. · Zbl 0632.30050
[7] B.D. MacCluer and J.H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces , Canad. J. Math. 38 (1986), 878-906. · Zbl 0608.30050 · doi:10.4153/CJM-1986-043-4
[8] N. Portnoy, Differentiation and composition on the Hardy and Bergman spaces , Dissertation, University of New Hampshire, 1998.
[9] R. Rochberg, Decomposition theorems for Bergman spaces and their applications , in Operators and function theory (S.C. Power, ed.), D. Reidel, Dordrecht, 1985, pp. 225-277. · Zbl 0594.46020
[10] J.H. Shapiro, Composition operators and classical function theory , Springer-Verlag, New York, 1993. · Zbl 0791.30033
[11] --------, The essential norm of a composition operator , Ann. of Math. 125 (1987), 375-404. JSTOR: · Zbl 0642.47027 · doi:10.2307/1971314 · http://links.jstor.org/sici?sici=0003-486X%28198703%292%3A125%3A2%3C375%3ATENOAC%3E2.0.CO%3B2-2&origin=euclid
[12] J.H. Shapiro and P.D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on $H^2$ , Indiana Univ. Math J. 23 (1973), 471-496. · Zbl 0276.47037 · doi:10.1512/iumj.1973.23.23041
[13] W. Smith, Composition operators between Bergman and Hardy spaces , Trans. Amer. Math. Soc. 348 (1996), 2331-2348. JSTOR: · Zbl 0857.47020 · doi:10.1090/S0002-9947-96-01647-9 · http://links.jstor.org/sici?sici=0002-9947%28199606%29348%3A6%3C2331%3ACOBBAH%3E2.0.CO%3B2-Z&origin=euclid
[14] W. Smith and L. Yang, Composition operators that improve integrability on weighted Bergman spaces , Proc. Amer. Math. Soc. 126 (1998), 411-420. JSTOR: · Zbl 0892.47031 · doi:10.1090/S0002-9939-98-04206-3 · http://links.jstor.org/sici?sici=0002-9939%28199802%29126%3A2%3C411%3ACOTIIO%3E2.0.CO%3B2-4&origin=euclid