Djordjević, Dragan S.; Stanimirović, Predrag S. On the generalized Drazin inverse and generalized resolvent. (English) Zbl 1079.47501 Czech. Math. J. 51, No. 3, 617-634 (2001). Summary: We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in \(C^*\)-algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel. Also, \(2\times 2\) operator matrices are considered. As corollaries, we get some well-known results. Cited in 2 ReviewsCited in 97 Documents MSC: 47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.) 47A10 Spectrum, resolvent 46L05 General theory of \(C^*\)-algebras Keywords:Drazin inverse; generalized resolvent; limit processes; outer inverses; operator matrices × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] A. Ben-Israel: On matrices of index zero or one. SIAM J. Appl. Math. 17 (1969), 1118-1121. · Zbl 0186.34002 · doi:10.1137/0117102 [2] A. Ben-Israel and T. N. E. Greville: Generalized Inverses: Theory and Applications. Wiley-Interscience, New York, 1974. · Zbl 0305.15001 [3] S. L. Campbell and C. D. Meyer: Generalized Inverses of Linear Transformations. Pitman, New York, 1979. · Zbl 0417.15002 [4] S. L. Campbell, C. D. Meyer and N. J. Rose: Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J. Appl. Math. 31 (1976), 411-425. · Zbl 0341.34001 · doi:10.1137/0131035 [5] S. R. Caradus: Generalized Inverses and Operator Theory. Queen’s paper in pure and applied mathematics, Quenn’s University, Kingston, Ontario, 1978. · Zbl 0434.47003 [6] K.-H. Förster and B. Nagy: Transfer functions and spectral projections. Publ. Math. Debrecen 52 (1998), 367-376. · Zbl 0911.47006 [7] C. W. Groetch: Representation of the generalized inverse. J. Math. Anal. Appl. 49 (1975), 154-157. · Zbl 0295.47012 · doi:10.1016/0022-247X(75)90166-3 [8] W. Guorong: An imbedding method for computing the generalized inverse. J. Comput. Math. 8 (1990), 353-362. [9] W. Guorong and Y. Wei: Limiting expression for generalized inverse \(A_{T,S}^{(2)}\) and its corresponding projectors. Numerical Mathematics (A Journal of Chinese Universities) 4 (1995), 25-30. · Zbl 0847.65025 [10] R. E. Harte: Spectral projections. Irish Math. Soc. Newsletter 11 (1984), 10-15. · Zbl 0556.47001 [11] R. E. Harte: Invertibility and Singularity for Bounded Linear Operators. New York, Marcel Dekker, 1988. · Zbl 0636.47001 [12] R. E. Harte: On quasinilpotents in rings. Panamer. Math. J. 1 (1991), 10-16. · Zbl 0761.16009 [13] R. E. Harte and M. Mbekhta: On generalized inverses in \(C^*\)-algebras. Studia Math. 103 (1992), 71-77. · Zbl 0810.46062 [14] J. Ji: An alternative limit expression of Drazin inverse and its application. Appl. Math. Comput. 61 (1994), 151-156. · Zbl 0805.65041 · doi:10.1016/0096-3003(94)90044-2 [15] J. J. Koliha: A generalized Drazin inverse. Glasgow Math. J. 38 (1996), 367-381. · Zbl 0897.47002 · doi:10.1017/S0017089500031803 [16] J. J. Koliha and V. Rakočević: Continuity of the Drazin inverse II. Studia Math. 131 (1998), 167-177. · Zbl 0926.47001 [17] I. Marek and K. Žitný: Matrix Analysis for Applied Sciences. Teubner-Texte zur Mathematik, Band 84, Leipzig, 1986. · Zbl 0613.15002 [18] C. D. Meyer: Limits and the index of a square matrix. SIAM J. Appl. Math. 26 (1974), 469-478. · Zbl 0249.15004 · doi:10.1137/0126044 [19] C. D. Meyer, Jr. and N. J. Rose: The index and the Drazin inverse of block triangular matrices. SIAM J. App. Math. 33 (1977), 1-7. · Zbl 0355.15009 · doi:10.1137/0133001 [20] V. Rakočević: Continuity of the Drazin inverse. J. Operator Theory 41 (1999), 55-68. · Zbl 0990.47002 [21] N. J. Rose: The Laurent expansion of a generalized resolvent with some applications. SIAM J. Math. Anal. 9 (1978), 751-758. · Zbl 0387.40005 · doi:10.1137/0509054 [22] U. G. Rothblum: A representation of the Drazin inverse and characterizations of the index. SIAM J. Appl. Math. 31 (1976), 646-648. · Zbl 0355.15008 · doi:10.1137/0131057 [23] U. G. Rothblum: Resolvent expansion of matrices and applications. Linear Algebra Appl. 38 (1981), 33-49. · Zbl 0468.15002 [24] P. S. Stanimirović: Limit representations of generalized inverses and related methods. Appl. Math. Comput. 103 (1999) · Zbl 0927.65060 [25] Y. Wei: A survey on the generalized inverse \(A_{T,S}^{(2)}\). Actas/Proceedings, Meetings on Matrix Analysis and Applications, Sevilla, Spain, (EAMA), Sep. 10-12,, 1997, pp. 421-428. [26] Y. Wei: A characterization and representation of the generalized inverse \(A_{T,S}^{(2)}\) and its applications. Linear Algebra Appl. 280 (1998), 87-96. · Zbl 0934.15003 · doi:10.1016/S0024-3795(98)00008-1 [27] Y. Wei: A characterization of the Drazin inverse. SIAM J. Matrix Anal. Appl. 17 (1996), 744-747. · Zbl 0872.15006 · doi:10.1137/S0895479895280697 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.