×

Approximation of acoustic waves by explicit Newmark’s schemes and spectral element methods. (English) Zbl 1079.65093

The acoustic wave equation is numerically approximated by conforming spectral elements in space and a finite difference Newmark‘s explicit integration scheme in time. A rigorous stability analysis is developed providing an upper bound for the time step. Several numerical results concerning stability and convergence of the proposed method are presented.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation
76Q05 Hydro- and aero-acoustics
76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Alford, R. M.; Kelly, K. R.; Boore, D. M., Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics, 39, 6, 834-842 (1974)
[2] Babuška, I.; Suri, M., The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. Numer. Anal., 21, 2, 199-238 (1987) · Zbl 0623.65113
[3] Babuška, I.; Suri, M., The \(p\) and h-p versions of the finite element method, basic principles and properties, SIAM Rev., 36, 4, 578-632 (1994) · Zbl 0813.65118
[4] Bamberger, A.; Glowinski, R.; Tran, Q. H., A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal., 34, 2, 603-639 (1997) · Zbl 0877.35066
[5] Bernardi, C.; Maday, Y., Approximations spectrales de problèmes aux limites elliptiques (1992), Springer: Springer Paris · Zbl 0773.47032
[6] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer New York · Zbl 0658.76001
[7] Casadei, F.; Gabellini, E.; Fotia, G.; Maggio, F.; Quarteroni, A., A mortar spectral/finite element method for complex 2d and 3d elastodynamic problems, Comput. Methods Appl. Mech. Engrg., 191, 45, 5119-5148 (2002)
[8] Dautray, R.; Lions, J. L., Analyse mathématique et calcul numérique pour les sciences et les techniques (1987), Masson: Masson Paris · Zbl 0708.35002
[9] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Methods for Incompressible Fluid Flow (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1007.76001
[10] Faccioli, E.; Maggio, F.; Quarteroni, A.; Tagliani, A., Spectral-domain decomposition for the solution of acoustic and elastic wave equations, Geophysics, 61, 1160-1174 (1996)
[11] Fish, J.; Chen, W., On accuracy, stability and efficiency of the Newmark method with incomplete solution by multilevel methods, Internat. J. Numer. Methods Engrg., 46, 2, 253-273 (1999) · Zbl 0958.74063
[12] Funaro, D., Spectral Elements for Transport-Dominated Equations (1997), Springer: Springer Berlin · Zbl 0891.65118
[14] Gervasio, P.; Saleri, F., Stabilized spectral element approximation for the Navier-Stokes equations, Numer. Methods Partial Differential Equations, 14, 1, 115-141 (1998) · Zbl 0899.76295
[15] Gottlieb, D.; Hesthaven, J. S., Spectral methods for hyperbolic problems, J. Comput. Appl. Math., 128, 1-2, 83-131 (2001) · Zbl 0974.65093
[16] Gui, W.; Babuška, I., The \(h, p\) and h-p versions of the finite element method in one dimension, part I, II, III, Numer. Math., 40, 577-683 (1986) · Zbl 0614.65090
[17] Hughes, T. J.R., The Finite Element Method. Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications Inc.: Dover Publications Inc. New York · Zbl 1191.74002
[19] Junger, M. C.; Feit, D., Sound, Structures and their Interaction (1986), MIT Press: MIT Press Cambridge, MA
[20] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for CFD (1998), Oxford University Press: Oxford University Press New York · Zbl 0857.76044
[21] Kelly, K. R.; Ward, R. W.; Treitel, S.; Alford, R. M., Synthetic seismogramsa finite-difference approach, Geophysics, 41, 2-27 (1976)
[23] Maggio, F.; Quarteroni, A., Acoustic wave simulation by spectral methods, East-West J. Numer. Math., 2, 2, 129-150 (1994) · Zbl 0838.76067
[24] Newmark, N. M., A method of computation for structural dynamics, Proc. ASCE, J. Eng. Mech. (EM3), 85, 67-94 (1959)
[25] Quarteroni, A.; Tagliani, A.; Zampieri, E., Generalized Galerkin approximations of elastic waves with absorbing boundary conditions, Comput. Methods Appl. Mech. Engrg., 163, 323-341 (1998) · Zbl 0964.74079
[26] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1994), Springer: Springer Berlin · Zbl 0852.76051
[27] Raviart, P. A.; Thomas, J. M., Introduction a l’Analyse Numerique des Equations aux Derivees Partielles (1983), Masson: Masson Paris · Zbl 0561.65069
[28] Schwab, C., \(p\)- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics (1998), Oxford University Press: Oxford University Press New York · Zbl 0910.73003
[29] Szabó, B.; Babuška, I., Finite Element Analysis (1991), Wiley: Wiley New York · Zbl 0792.73003
[30] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965), Clarendon Press: Clarendon Press Oxford · Zbl 0258.65037
[31] Wood, W. L., Practical Time-Stepping Schemes (1990), Clarendon Press: Clarendon Press Oxford · Zbl 0694.65043
[32] Zampieri, E., On the condition number of some spectral collocation operators and their finite element preconditioning, J. Sci. Comput., 9, 4, 419-443 (1994) · Zbl 0822.65092
[34] Zampieri, E.; Tagliani, A., Numerical approximation of elastic waves equations by implicit spectral methods, Comput. Methods Appl. Mech. Engrg., 144, 33-50 (1997) · Zbl 0892.73079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.