zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising. (English) Zbl 1079.68104
Summary: Inspired by papers of {\it L. Vese} and {\it S. Osher} [(*) “Modeling textures with total variation minimization and oscillating patterns in image processing”, J. Sci. Comput. 19, 553--572 (2003; Zbl 1034.49039)] and {\it S. Osher, A. Solé} and {\it L. Vese} [(**) “Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm”, Multiscale Model. Simul. 1, 349--370 (2003; Zbl 1051.49026)], we present a wavelet-based treatment of variational problems arising in the field of image processing. In particular, we follow their approach and discuss a special class of variational functionals that induce a decomposition of images into oscillating and cartoon components and possibly an appropriate `noise’ component. In the setting of (*) and (**), the cartoon component of an image is modeled by a $BV$ function; the corresponding incorporation of $BV$ penalty terms in the variational functional leads to PDE schemes that are numerically intensive. By replacing the $BV$ penalty term by a $B_1^1(L_1)$ term (which amounts to a slightly stronger constraint on the minimizer), and writing the problem in a wavelet framework, we obtain elegant and numerically efficient schemes with results very similar to those obtained in (*) and (**). This approach allows us, moreover, to incorporate general bounded linear blur operators into the problem so that the minimization leads to a simultaneous decomposition, deblurring and denoising.

MSC:
68U10Image processing (computing aspects)
49N90Applications of optimal control and differential games
65T60Wavelets (numerical methods)
94A08Image processing (compression, reconstruction, etc.)
Software:
DT-CWT
WorldCat.org
Full Text: DOI
References:
[1] Cohen, A.; Daubechies, I.; Feauveau, J. -C.: Biorthogonal bases of compactly supported wavelets. Comm. pure appl. Math. 45, 485-560 (1992) · Zbl 0776.42020
[2] Cohen, A.; Devore, R.; Petrushev, P.; Xu, H.: Nonlinear approximation and the space $BV(R2)$. Am. J. Math. 121, 587-628 (1999) · Zbl 0931.41019
[3] Coifman, R. R.; Donoho, D.: Translation-invariant de-noising. Wavelets and statistics, 125-150 (1995) · Zbl 0866.94008
[4] Dahmen, W.: Stability of multiscale transformations. J. Fourier anal. Appl. 2, 341-361 (1996) · Zbl 0919.46006
[5] Daubechies, I.: Ten lectures on wavelets. (1992) · Zbl 0776.42018
[6] Daubechies, I.: Wavelet transforms and orthonormal wavelet bases. Proceedings of symposia in applied mathematics 47 (1993) · Zbl 0802.42025
[7] I. Daubechies, M. Defrise, C. DeMol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., in press · Zbl 1077.65055
[8] Daubechies, I.; Teschke, G.: Wavelet-based image decompositions by variational functionals. Proc. SPIE 5266, 94-105 (2004)
[9] M. Defrise, C. DeMol, Inverse imaging with mixed penalties, Conference Proceedings, 2003
[10] M. Defrise, C. DeMol, Linear inverse problems with mixed smoothness and sparsity constraints, Preprint, 2003
[11] Devore, R.: Nonlinear approximation. Acta numer. 7, 51-150 (1998) · Zbl 0931.65007
[12] Devore, R.; Jawerth, B.; Popov, V.: Interpolation of Besov spaces. Trans. math. Soc. 305, 397-414 (1988) · Zbl 0646.46030
[13] Devore, R.; Jawerth, B.; Popov, V.: Compression of wavelet decompositions. Am. J. Math. 114, 737-785 (1992) · Zbl 0764.41024
[14] Fernandes, F. C. A.; Spaendonck, R. V.; Coates, M. J.; Burrus, S.: Directional complex-wavelet processing. Proceedings of society of photo-optical instrumental engineers --- SPIE2000 (2000)
[15] Frazier, M.; Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. funct. Anal. 93, 34-170 (1990) · Zbl 0716.46031
[16] Kinsbury, N.: Image processing with complex wavelets. Philos. trans. Roy. soc. London 357, 2543-2560 (September 1999) · Zbl 0976.68527
[17] Mallat, S.; Zhong, S.: Characterization of signals from multiscale edges. IEEE trans. Pattern anal. Mach intelligence 14, No. 7, 710-732 (1992)
[18] Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University lecture series 22 (2002)
[19] S. Osher, A. Sole, L. Vese, Image decomposition and restoration using total variation minimization and the H - 1 norm, Technical Report 02-57, University of California Los Angeles, C.A.M., 2002
[20] S. Osher, L. Vese, Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, University of California Los Angeles, C.A.M., 2002 · Zbl 1034.49039
[21] Rudin, L.; Osher, S.; Fatemi, E.: Nonlinear total variations based noise removal algorithms. Physica D 60, 259-268 (1992) · Zbl 0780.49028
[22] Selesnick, I. W.: Hilbert transform pairs of wavelet bases. IEEE signal process. Lett. 8, No. 6, 170-173 (2001)
[23] Triebel, H.: Interpolation theory, function spaces, differential operators. (1978) · Zbl 0387.46033