×

zbMATH — the first resource for mathematics

An introduction to computational nanomechanics and materials. (English) Zbl 1079.74506
Summary: Many arenas of research are rapidly advancing due to a combined effort between engineering and science. In some cases, fields of research that were stagnating under the exclusive domain of one discipline have been imbued with new discoveries through collaboration with practitioners from the second discipline. In computational mechanics, we are particularly concerned technological engineering interest by combining engineering technology and basic sciences through modeling and simulations. These goals have become particularly relevant due to the emergence of the field of nanotechnology, and the related burst of interest in nanoscale research. In this introductory article, we first briefly review the essential tools used by nanoscale researchers. These simulation methods include the broad areas of quantum mechanics, molecular dynamics and multiple-scale approaches, based on coupling the atomistic and continuum models. Upon completing this review, we shall conclusively demonstrate that the atomistic simulation tools themselves are not sufficient for many of the interesting and fundamental problems that arise in computational mechanics, and that these deficiencies lead to the thrust of multiple-scale methods. We summarize the strengths and limitations of currently available multiple-scale techniques, where the emphasis is made on the latest perspective approaches, such as the bridging scale method, multi-scale boundary conditions, and multi-scale fluidics. Example problems, in which multiple-scale simulation methods yield equivalent results to full atomistic simulations at fractions of the computational cost, are shown. We conclude by discussing future research directions and needs in multiple-scale analysis, and also discuss the ramifications of the integration of current nanoscale research into education.

MSC:
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74M25 Micromechanics of solids
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
Software:
VASP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, New Jersey
[2] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (1991), McGraw-Hill London, New York · Zbl 0991.74002
[3] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley & Sons Chichester, New York · Zbl 0959.74001
[4] Li, S.; Liu, W.K., Meshfree and particle methods and their applications, Appl. mech. rev., 55, 1-34, (2002)
[5] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 8-9, 1081-1106, (1995) · Zbl 0881.76072
[6] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077
[7] Belytschko, T.; Lu, Y.Y.; Gu, L.; Tabarra, M., Element-free Galerkin methods for static and dynamic fracture, Int. J. solids struct., 32, 17, 2547-2570, (1995) · Zbl 0918.73268
[8] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods engrg., 38, 1655-1679, (1995) · Zbl 0840.73078
[9] Liu, W.K.; Jun, S.; Sihling, D.T.; Chen, Y.; Hao, W., Multiresolution reproducing kernel particle method for computational fluid dynamics, Int. J. numer. methods fluids, 24, 1391-1415, (1997) · Zbl 0880.76057
[10] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. numer. methods fluids, 21, 901-931, (1995) · Zbl 0885.76078
[11] Liu, W.K.; Chen, Y.; Chang, C.T.; Belytschko, T., Advances in multiple scale kernel particle methods, Computat. mech., 18, 2, 73-111, (1996) · Zbl 0868.73091
[12] Günther, F.C.; Liu, W.K., Implementation of boundary conditions for meshless methods, Comput. methods appl. mech. engrg., 163, 1-4, 205-230, (1998) · Zbl 0963.76068
[13] Günther, F.C.; Liu, W.K.; Christon, M.A., Multiscale meshfree parallel computations for viscous, compressible flows, Comput. methods appl. mech. engrg., 190, 279-303, (2000) · Zbl 0973.76045
[14] Liu, W.K.; Zhang, Y.F.; Ramirez, M.R., Multiple scale finite element methods, Int. J. numer. methods engrg., 32, 5, 969-990, (1991) · Zbl 0758.73049
[15] Babuska, I.; Melenk, J.M., The partition of unity method, Int. J. numer. methods engrg., 40, 4, 727-758, (1997) · Zbl 0949.65117
[16] Liu, W.K.; Uras, R.A.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, ASME J. appl. mech., 64, 861-870, (1997) · Zbl 0920.73366
[17] Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.F.; Ruoff, R.S., Mechanics of carbon nanotubes, Appl. mech. rev., 55, 6, 495-533, (2002)
[18] Goddard, W.A.; Brenner, D.W.; Lyshevski, S.E.; Iafrate, G.J., Handbook of nanoscience, engineering and technology, (2003), CRC Press London
[19] Qian, D.; Liu, W.K.; Ruoff, R.S., Mechanics of C60 in nanotubes, J. phys. chem. B, 105, 10753-10758, (2001)
[20] Qian, D.; Liu, W.K.; Ruoff, R.S., Load transfer mechanism in carbon nanotube ropes, Compos. sci. technol., 63, 11, 1561-1569, (2003)
[21] Qian, D.; Liu, W.K.; Subramoney, S.; Ruoff, R.S., Effect of interlayer interaction on the mechanical deformation of multiwalled carbon nanotube, J. nanosci. nanotechnol., 3, 1, 185-191, (2003)
[22] R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predications and experimental measurements, Proceedings of the French Academy of Sciences, in press
[23] Yu, M.F.; Dyer, M.J.; Chen, J.; Qian, D.; Liu, W.K.; Ruoff, R.S., Locked twist in multi-walled carbon nanotube ribbons, Phys. rev. B, rapid commun., 64, 241403R, (2001)
[24] Shenderova, O.A.; Zhirnov, V.V.; Brenner, D.W., Carbon nanostructures, Crit. rev. solid state, 27, 3-4, 227-356, (2002)
[25] Yakobson, B.I.; Brabec, C.J.; Bernholc, J., Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. rev. lett., 76, 14, 2511-2514, (1996)
[26] Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C., Science of fullerenes and carbon nanotubes, (1996), Academic Press San Diego
[27] Harris, P.J.F., Carbon nanotube and related structures: new materials for the 21st century, (1999), Cambridge University Press Cambridge, UK
[28] Yakobson, B.I.; Smalley, R.E., Fullerene nanotubes: C-1000000 and beyond, Am. scientist, 85, 4, 324-337, (1997)
[29] Bernholc, J.; Brabec, C.; Nardelli, M.B.; Maiti, A.; Roland, C.; Yakobson, B.I., Theory of growth and mechanical properties of nanotubes, Appl. phys. A–mater. sci. process., 67, 1, 39-46, (1998)
[30] Pokropivnyi, V.V., Non-carbon nanotubes (review) II: types and structure, Powder metall. metal ceram., 40, 11-12, 582-594, (2001)
[31] Zettl, A., Non-carbon nanotubes, Adv. mater., 8, 5, 443, (1996)
[32] Beecrot, L.L.; Ober, C.K., Nanocomposite materials for optical applications, Chem. mater., 9, 6, 1302-1317, (1997)
[33] Alexandre, M.; Dubois, P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. sci. engrg. R, 28, 1-2, 1-63, (2000)
[34] Wei, C.; Srivastava, D.; Cho, K., Thermal expansion and diffusion coefficients of carbon nanotube – polymer composites, Nanoletters, 2, 6, 647-650, (2002)
[35] Qian, D.; Dickey, E.C.; Andrews, R.; Rantell, T., Load transfer and deformation mechanisms in carbon nanotube – polystyrene composites, Appl. phys. lett., 76, 20, 2868-2870, (2000)
[36] Shaffer, M.S.P.; Windle, A.H., Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. mater., 11, 11, 937, (1999)
[37] Odegard, G.M.; Gates, T.S.; Nicholson, L.M.; Wise, K.E., Equivalent-continuum modeling of nano-structured materials, Compos. sci. technol., 62, 14, 1869-1880, (2002)
[38] Andrews, R.; Jacques, D.; Minot, M.; Rantell, T., Fabrication of carbon multiwall nanotube/polymer composites by shear mixing, Macromol. mater. engrg., 287, 6, 395-403, (2002)
[39] Kiely, C.J.; Fink, J.; Zheng, J.G.; Brust, M.; Bethell, D.; Schiffrin, D.J., Ordered colloidal nanoalloys, Adv. mater., 12, 9, 640, (2000)
[40] Moriarty, P., Nanostructured materials, Rep. prog. phys., 64, 3, 297-381, (2001)
[41] Bryden, K.J.; Ying, J.Y., Thermal stability and hydrogen absorption characteristics of palladium – yttrium nanoalloys, Acta mater., 44, 9, 3847-3854, (1996)
[42] Wilson, N.T.; Johnston, R.L., A theoretical study of atom ordering in copper – gold nanoalloy clusters, J. mater. chem., 12, 10, 2913-2922, (2002)
[43] Sansom, M.S.P.; Biggin, P.C., Water at the nanoscale, Nature, 414, 156-159, (2001)
[44] Wasan, D.T.; Nikolov, A.D., Spreading of nanofluids on solids, Nature, 423, 156-159, (2003)
[45] Dujardin, E.; Ebbesen, T.W.; Hiura, H.; Tanigaki, K., Capillarity and wetting of carbon nanotubes, Science, 265, 1850-1852, (1994)
[46] Thompson, P.A.; Troian, S.M., A general boundary condition for liquid flow at solid surfaces, Nature, 389, 360-362, (1997)
[47] Gogotsi, Y.; Libera, J.A.; Yazicioglu, A.G.; Megaridis, C.M., In situ multiphase fluid experiments in hydrothermal carbon nanotubes, Appl. phys. lett., 79, 7, 1021-1023, (2001)
[48] Koga, K.; Tanaka, H.; Zeng, X.C., First-order transition in confined water between high-density liquid and low-density amorphous phases, Nature, 408, 564-567, (2000)
[49] Haile, J.M., Molecular dynamics simulation, (1992), Wiley & Sons New York
[50] Allen, M.P.; Tildesley, D.J., Computer simulation of liquids, (1987), Oxford University Press New York · Zbl 0703.68099
[51] Hoover, W.G., Molecular dynamics, (1986), Springer-Verlag Berlin
[52] Rapaport, D.C., The art of molecular dynamics simulation, (1995), Cambridge University Press New York · Zbl 0612.65004
[53] Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R., Molecular dynamics with coupling to an external Bath, J. chem. phys., 81, 8, 3684-3690, (1984)
[54] Sċhäfer, C.; Urbassek, H.M.; Zhigilei, L.V.; Garrison, B.J., Pressure-transmitting boundary conditions for molecular dynamics simulations, Compos. mater. sci., 24, 421-429, (2002)
[55] Huang, W.E.Z., Matching conditions in atomistic-continuum modeling of materials, Phys. rev. lett., 87, 13, 135501, (2001)
[56] Cai, W.; de Koning, M.; Bulatov, V.V.; Yip, S., Minimizing boundary reflections in coupled-domain simulations, Phys. rev. lett., 85, 15, 3213-3216, (2000)
[57] E.G. Karpov, G.J. Wagner, W.K. Liu, A Green’s function approach to deriving wave-transmitting boundary conditions in molecular dynamics simulations, Compos. Mater. Sci., submitted for publication · Zbl 1080.74050
[58] G.J. Wagner, E.G. Karpov, W.K. Liu, Molecular dynamics boundary conditions for regular crystal lattices, Computer Methods in Applied Mechanics and Engineering: Special Issue on Multiscale Nano Mechanics and Materials, 2003 · Zbl 1079.74526
[59] Goldstein, H.; Poole, C.P.; Poole, C.P.; Safko, J.L., Classical mechanics, (2002), Addison Wesley San Francisco
[60] Landau, L.D.; Lifshitz, E.M., Mechanics, (1978), Pergamon Press Oxford, New York · Zbl 0081.22207
[61] Jones, J.E., On the determination of molecular fields. I. from the variation of the viscosity of a gas with temperature, Proc. roy. soc. A, 106, 441-462, (1924)
[62] Jones, J.E., On the determination of molecular fields. II. from the equation of state of a gas, Proc. roy. soc. A, 106, 463-477, (1924)
[63] Wang, Y.; Tomanek, D.; Bertsch, G.F., Stiffness of a solid composed of c60 clusters, Phys. rev. B, 44, 12, 6562-6565, (1991)
[64] Mahaffy, R.; Bhatia, R.; Garrison, B.J., Diffusion of a butanethiolate molecule on a au111 surface, J. phys. chem. B, 101, 771-773, (1997)
[65] Stillinger, F.H.; Weber, T.A., Computer simulation of local order in condensed phases of silicon, Phys. rev. B, 31, 8, 5262-5271, (1985)
[66] Takai, T.; Halicioglu, T.; Tiller, W.A., Prediction for the pressure and temperature phase transitions of silicon using a semiempirical potential, Script. metall., 19, 6, 709-713, (1985)
[67] Biswas, R.; Hamann, D.R., Interatomic potential for silicon structural energies, Phys. rev. lett., 55, 19, 2001-2004, (1985)
[68] Biswas, R.; Hamann, D.R., New classical models for silicon structural energies, Phys. rev. B., 36, 12, 6434-6445, (1987)
[69] Tersoff, J., New empirical approach for the structure and energy of covalent systems, Phys. rev. B, 37, 12, 6991-7000, (1988)
[70] Tersoff, J., New empirical model for the structural properties of silicon, Phys. rev. lett., 56, 6, 632-635, (1986)
[71] Tersoff, J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. rev. lett., 61, 25, 2879-2882, (1988)
[72] Brenner, D.W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. rev. B, 42, 15, 9458-9471, (1990)
[73] Rosenblum, I.; Adler, J.; Brandon, S., Multi-processor molecular dynamics using the Brenner potential: parallelization of an implicit multi-body potential, Int. J. modern phys. C, 10, 1, 189-203, (1999)
[74] Los, J.H.; Fasolino, A., Monte Carlo simulations of carbon-based structures based on an extended Brenner potential, Comput. phys. commun., 147, 1-2, 178-181, (2002) · Zbl 0994.82523
[75] Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. phys.: condens. matter, 14, 783-802, (2002)
[76] Finnis, M.W.; Sinclair, J.E., A simple empirical N-body potential for transition metals, Philos. mag. A, 50, 1, 45-55, (1984)
[77] Konishi, T.; Ohsawa, K.; Abe, H.; Kuramoto, E., Determination of N-body potential for fe – cr alloy system and its application to defect study, Computat. mater. sci., 14, 1-4, 108-113, (1999)
[78] Daw, M.S.; Foiles, S.M.; Baskes, M.I., The embedded-atom method: a review of theory and applications, Mater. sci. rep., 9, 251-310, (1993)
[79] Daw, M.S., Model of metallic cohesion: the embedded-atom method, Phys. rev. B, 39, 11, 7441-7452, (1989)
[80] Johnson, R.A., Analytic nearest-neighbor model for fcc metals, Phys. rev. B, 37, 8, 3924-3931, (1988)
[81] Park, D., Introduction to the quantum theory, (1992), McGraw-Hill New York
[82] Davydov, A.S., Quantum mechanics, (1965), Pergamon Press Oxford, New York
[83] Dirac, P.A.M., The principles of quantum mechanics, (1981), Clarendon Press Oxford · Zbl 0012.18104
[84] Landau, L.D.; Lifshitz, E.M., Quantum mechanics, (1959), Pergamon Press London, Paris · Zbl 0081.22207
[85] Mueller, M., Fundamentals of quantum chemistry, (2001), Kluwer Academic/Plenum Publishers New York
[86] La Paglia, S.R., Introductory quantum chemistry, (1971), Harper & Row Publishers New York
[87] Pilar, F.L., Elementary quantum chemistry, (1990), McGraw-Hill New York
[88] Ohno, K.; Esfarjani, K.; Kawazoe, Y., Computational materials science: from ab initio to Monte Carlo methods, (1999), Springer Berlin, New York
[89] Bloch, F., Über die quantenmechanik der elektronen in kristallgittern, Zeitschrift für physik, 52, 555-600, (1928) · JFM 54.0990.01
[90] Slater, J.C.; Koster, G.F., Simplified LCAO method for the periodic potential problem, Phys. rev., 94, 6, 1498-1524, (1954) · Zbl 0055.44404
[91] Hartree, D.R., The wave mechanics of an atom in with a non-Coulomb central field. part I: theory and methods, Proc. Cambridge phil. soc., 24, 89, (1928) · JFM 54.0966.05
[92] Fock, V., Näherungsmethode zur Lösung des quantenmechanischen mehrkörperproblems, Zeitschrift für physik, 61, 126-148, (1930) · JFM 56.1313.08
[93] Clementi, E., Ab initio computations in atoms and molecules, IBM J. res. dev., 44, 1-2, 228-245, (2000)
[94] Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Phys. rev., 136, 3B, 864-871, (1964)
[95] Kohn, W.; Sham, J., Self-consistent equations including exchange and correlation effects, Phys. rev., 140, 4A, 1133-1138, (1965)
[96] Perdew, J.P.; McMullen, E.R.; Zunger, A., Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge, Phys. rev. A, 23, 6, 2785-2789, (1981)
[97] Slater, J.C.; Wilson, T.M.; Wood, J.H., Comparison of several exchange potentials for electrons in the cu^+ ion, Phys. rev., 179, 1, 28-38, (1969)
[98] Moruzzi, V.L.; Sommers, C.B., Calculated electronic properties of ordered alloys, (1995), World Scientific Pub. Co Singapore
[99] Car, R.; Parrinello, M., Unified approach for molecular dynamics and density functional theory, Phys. rev. lett., 55, 22, 2471-2474, (1985)
[100] Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. mod. phys., 64, 4, 1045-1097, (1992)
[101] VASP group, Vienna Ab-initio Simulation Package, Available from <http://cms.mpi.univie.ac.at/vasp>
[102] Kaukonen, H.P.; Nieminen, R.M., Molecular-dynamics simulation of the growth of diamond like films by energetic carbon-atom beams, Phys. rev. lett., 68, 5, 620-623, (1992)
[103] Zhang, H.S.L.; Johnson, H.T.; Wagner, G.J.; Liu, W.K.; Hsia, K.J., Stress generation mechanisms in carbon thin films grown by ion-beam deposition, Acta mater., 51, 17, 5211-5222, (2003)
[104] Dao, M.; Chollacoop, N.; Van Vliet, K.J.; Venkatesh, T.A.; Suresh, S., Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta mater., 49, 3899-3918, (2001)
[105] Herbert, E.G.; Pharr, G.M.; Oliver, W.C.; Lucas, B.N.; Hay, J.L., On the measurement of stress – strain curves by spherical indentation, Thin solid films, 398, 331-335, (2001)
[106] Tymiak, N.I.; Kramer, D.E.; Bahr, D.F.; Wyrobek, T.J.; Gerberich, W.W., Plastic strain and strain gradients at very small indentation depths, Acta mater., 49, 1021-1034, (2001)
[107] Gerberich, W.W.; Tymiak, N.I.; Grunlan, J.C.; Horstemeyer, M.F.; Baskes, M.I., Interpretations of indentation size effects, J. appl. mech., 69, 4, 433-442, (2002) · Zbl 1110.74454
[108] Depondt, P.; Ghazali, A.; Levy, J.C.S., Self-locking of a modulated single overlayer in nanotribology simulation, Surf. sci., 419, 1, 29-37, (1998)
[109] S. Zhang, G.J. Wagner, S.N. Medyanik, W.K. Liu, Y.H. Yu, Y.W. Chung, Experimental and molecular dynamics studies of friction behavior of hydrogenated carbon films, Surf. Coat. Technol., in press
[110] Abraham, F.F.; Broughton, J.Q.; Bernstein, N.; Kaxiras, E., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture, Europhys. lett., 44, 6, 783-787, (1998)
[111] Broughton, J.Q.; Abraham, F.F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: methodology and application, Phys. rev. B, 60, 4, 2391-2403, (1999)
[112] H.S. Park, W.K. Liu, An introduction and tutorial on multiple scale analysis in solids, Computer Methods in Applied Mechanics and Engineering: Special Issue on Multiscale Nano Mechanics and Materials, 2003
[113] Tadmor, E.B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Phil. mag. A, 73, 6, 1529-1563, (1996)
[114] Tadmor, E.B.; Phillips, R.; Ortiz, M., Mixed atomistic and continuum models of deformation in solids, Langmuir, 12, 19, 4529-4534, (1996)
[115] Shenoy, V.B.; Miller, R.; Tadmor, E.B.; Phillips, R.; Ortiz, M., Quasicontinuum models of interfacial structure and deformation, Phys. rev. lett., 80, 4, 742-745, (1998)
[116] Miller, R.; Tadmor, E.B.; Phillips, R.; Ortiz, M., Quasicontinuum simulation of fracture at the atomic scale, Model. simul. mater. sci. engrg., 6, 5, 607-638, (1998)
[117] Ortiz, M.; Cuitino, A.M.; Knap, J.; Koslowski, M., Mixed atomistic continuum models of material behavior: the art of transcending atomistics and informing continua, MRS bull., 26, 3, 216-221, (2001)
[118] Knap, J.; Ortiz, M., An analysis of the quasicontinuum method, J. mech. phys. solids, 49, 9, 1899-1923, (2001) · Zbl 1002.74008
[119] Shenoy, V.; Shenoy, V.; Phillips, R., Finite temperature quasicontinuum methods, Mater. res. soc. symp. proc., 538, 465-471, (1999)
[120] Curtin, W.A.; Miller, R.E., Atomistic/continuum coupling in computational materials science, Model. simulat. mater. sci. engrg., 11, R33-R68, (2003)
[121] Eringen, A.C., Microcontinuum field theories, (1999), Springer New York · Zbl 0953.74002
[122] Germain, P., Method of virtual power in continuum mechanics. 2. microstructure, SIAM J. appl. math., 25, 3, 556-575, (1973) · Zbl 0273.73061
[123] Chambon, R.; Caillerie, D.; Matsuchima, T., Plastic continuum with micro structure, local second gradient theories for geomaterials: localization studies, Int. J. solids struct., 38, 46-47, 8503-8527, (2001) · Zbl 1047.74522
[124] Mariano, P.M., Multifield theories in mechanics of solids, Adv. appl. mech., 38, 1-93, (2002)
[125] H. Kadowaki, W.K. Liu, Bridging multi-scale method for localization problems, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1060.74504
[126] Su Hao, W.K. Liu, G.B. Olson, B. Moran, F. Vereck, A hierarchical constitutive model for materials design, Comput. Methods Appl. Mech. Engrg., in this issue
[127] D. Qian, G.J. Wagner, W.K. Liu, A multiscale projection method for the analysis of carbon nanotubes, Comput. Methods Appl. Mech. Engrg., in this issue · Zbl 1079.74595
[128] H.S. Park, E.G. Karpov, W.K. Liu, P.A. Klein, The bridging scale for two-dimensional atomistic/continuum coupling, Comput. Methods Appl. Mech. Engrg., in this issue
[129] Wagner, G.J.; Liu, W.K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. computat. phys., 190, 249-274, (2003) · Zbl 1169.74635
[130] H.S. Park, E.G. Karpov, W.K. Liu, A temperature equation for coupled atomistic/continuum simulations, Computer Methods in Applied Mechanics and Engineering: Special Issue on Multiscale Nano Mechanics and Materials, 2003 · Zbl 1079.74507
[131] Rudd, R.E.; Broughton, J.Q., Coarse-grained molecular dynamics and the atomic limit of finite elements, Phys. rev. B, 58, 10, R5893-R5896, (1998)
[132] Rudd, R.E.; Broughton, J.Q., Concurrent coupling of length scales in solid state systems, Phys. status solidi B, 217, 1, 251-291, (2000)
[133] Adelman, S.; Doll, J., Generalized Langevin equation approach for atom/solid-surface scattering–collinear atom/harmonic chain model, J. chem. phys., 61, 10, 4242-4245, (1974)
[134] Adelman, S.; Doll, J., Generalized Langevin equation approach for atom-solid-surface scattering–general formulation for classical scattering off harmonic solids, J. chem. phys., 64, 6, 2375-2388, (1976)
[135] Karpov, E.G.; Stephen, N.G.; Dorofeev, D.L., On static analysis of finite repetitive structures by discrete Fourier transform, Int. J. solids struct., 39, 16, 4291-4310, (2002) · Zbl 1045.74052
[136] Ryvkin, M.; Fuchs, M.B.; Nuller, B., Optimal design of infinite repetitive structures, Struct. optim., 18, 2-3, 202-209, (1999)
[137] Karpov, E.G.; Stephen, N.G.; Liu, W.K., Initial tension in randomly disordered periodic lattices, Int. J. solids struct., 40, 20, 5371-5388, (2003) · Zbl 1060.74562
[138] Maradudin, A.A.; Montroll, E.W.; Weiss, G.H.; Ipatova, I.P., Theory of lattice dynamics in the harmonic approximation, (1971), Academic Press New York
[139] Borchardt-Ott, W., Crystallography, (1993), Springer-Verlag Berlin, New York
[140] Mak, T.C.W.; Zhou, G.-D., Crystallography in modern chemistry: A resource book of crystal structures, (1992), Wiley New York
[141] E.G. Karpov, W.K. Liu, A non-linear operator for impedance and multiscale boundary conditions in solids, in press
[142] E.G. Karpov, H. Yu, H.S. Park, W.K. Liu, J. Wang, Multiscale boundary conditions in crystalline solids: theory and application to nanoindentation, Phys. Rev. B, submitted for publication · Zbl 1120.74396
[143] E.G. Karpov, W.K. Liu, On the concurrent multiscale coupling of quantum mechanical and molecular dynamics simulations of nanostructured materials, in preparation
[144] Abraham, F.F.; Brodbeck, D.; Rudge, W.E.; Xu, X., A molecular dynamics investigation of rapid fracture mechanics, J. mech. phys. solids, 45, 9, 1595-1619, (1997) · Zbl 0974.74558
[145] Abraham, F.F.; Walkup, R.; Gao, H.J.; Duchaineau, M.; De la Rubia, T.D.; Seager, M., Simulating materials failure by using up to one billion atoms and the World’s fastest computer: brittle fracture, Proc. natl. acad. sci. USA, 99, 9, 5777-5782, (2002)
[146] Weeks, W.T., Numerical inversion of Laplace transforms using Laguerre functions, J. assoc. comput. Mach., 13, 3, 419-426, (1966) · Zbl 0141.33401
[147] Papoulis, A., A new method of inversion of the Laplace transform, Quart. appl. math., 14, 405-414, (1956) · Zbl 0077.11402
[148] Davies, B.; Martin, B., Numerical inversion of the Laplace transform: a survey and comparison of methods, J. computat. phys., 33, 1-32, (1979) · Zbl 0416.65077
[149] Duffy, D.G., On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications, ACM trans. math. software, 19, 3, 333-359, (1993) · Zbl 0892.65079
[150] Toda, M., Theory of non-linear lattices, (1981), Springer-Verlag Berlin, New York
[151] Y. Liu, L.T. Zhang, X. Wang, W.K. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, in preparation · Zbl 1135.92302
[152] L.T. Zhang, A. Gerstenberger, X. Wang, W.K. Liu, Immersed finite element method, Comput. Methods Appl. Math. Eng., in press · Zbl 1067.76576
[153] X. Wang, W.K. Liu, Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1060.74676
[154] Chien, S., Clumping (reversible aggregation and irreversible agglutination) of blood cellular elements–electrochemical interactions between erythrocyte surfaces, Thrombosis res., 8, 189-202, (1976)
[155] P.A. Deymier, J.O. Vasseur, Concurrent multiscale model of an atomic crystal coupled with elastic continua, Phys. Rev. B 66(13) (2002) Art. No. 134106
[156] Voter, A.F., Hyperdynamics: accelerated molecular dynamics of infrequent events, Phys. rev. lett., 78, 20, 3908-3911, (1997)
[157] Voter, A.F., A method for accelerating molecular dynamics simulation of infrequent events, J. chem. phys., 106, 11, 4665-4677, (1997)
[158] Voter, A.F.; Montalenti, F.; Germann, T.C., Extending the time scale in atomistic simulation of materials, Ann. rev. mater.res., 32, 321-346, (2002)
[159] Huang, H.C.; Gilmer, G.H.; Rubia, T.D., An atomistic simulator for thin film deposition in three dimensions, J. appl. phys., 84, 7, 3636-3649, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.