Pradhan, Anirudh; Pandey, Prakash Bianchi type I anisotropic magnetized cosmological models with varying \(\Lambda\). (English) Zbl 1079.83578 Int. J. Mod. Phys. D 12, No. 7, 1299-1314 (2003). Summary: Bianchi type I magnetized cosmological models in the presence of a bulk viscous fluid are investigated. The source of the magnetic field is due to an electric current produced along the \(x\)-axis. The distribution consists of an electrically neutral viscous fluid with an infinite electrical conductivity. The coefficient of bulk viscosity is assumed to be a power function of mass density. The cosmological constant \(\Lambda\) is found to be positive and is a decreasing function of time which is supported by results from recent supernovae observations. The behaviour of the models in the presence and the absence of magnetic field are also discussed. Cited in 18 Documents MSC: 83F05 Relativistic cosmology 83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory 82C05 Classical dynamic and nonequilibrium statistical mechanics (general) Keywords:Cosmology; Bianchi type I universe; variable cosmological constant; magnetofluid models PDF BibTeX XML Cite \textit{A. Pradhan} and \textit{P. Pandey}, Int. J. Mod. Phys. D 12, No. 7, 1299--1314 (2003; Zbl 1079.83578) Full Text: DOI arXiv References: [1] DOI: 10.1103/PhysRevLett.30.188 [2] Robertson H. P., Proc. London Math. Soc. 42 pp 90– (1936) [3] Asseo E., Phys. Rep. 6 pp 148– (1987) [4] DOI: 10.1111/j.1749-6632.1975.tb31440.x [5] DOI: 10.1086/167625 [6] DOI: 10.1086/170484 [7] Perley R., Astrophys. J. 101 pp 1623– (1991) [8] DOI: 10.1086/171104 [9] DOI: 10.1086/171125 [10] DOI: 10.1086/303987 [11] DOI: 10.1038/385131a0 [12] Barrow J. D., Phys. Rev. 55 pp 7451– (1997) [13] Zeldovich Ya. A., Sov. Astron. 13 pp 608– (1970) [14] Turner M. S., Phys. Rev. 30 pp 2743– (1988) [15] DOI: 10.1086/185528 [16] DOI: 10.1086/186384 [17] Dolgov A. D., Phys. Rev. 47 pp 3144– (1993) [18] Dolgov A. D., Phys. Rev. 48 pp 2499– (1993) [19] Bali R., Int. J. Theor. Phys. 47 pp 7– (1986) [20] DOI: 10.1086/149127 [21] DOI: 10.1086/149694 [22] DOI: 10.1086/149875 [23] DOI: 10.1071/PH850239 [24] DOI: 10.1007/BF02755172 [25] Klimek Z., Post. Astron. 19 pp 165– (1971) [26] DOI: 10.1086/151073 [27] DOI: 10.1007/BF00643930 · Zbl 0714.76120 [28] DOI: 10.1088/0264-9381/8/2/014 [29] DOI: 10.1088/0264-9381/12/6/011 · Zbl 0825.83004 [30] Zimdahl W., Phys. Rev. 53 pp 5483– (1996) [31] DOI: 10.1063/1.526582 · Zbl 0562.76124 [32] DOI: 10.1016/0375-9601(87)90104-6 [33] DOI: 10.1016/0375-9601(88)90860-2 [34] Pradhan A., Astr. Lett. Commun. 35 pp 283– (1997) [35] DOI: 10.1142/S0218271801000767 [36] DOI: 10.1142/S021827180100086X [37] DOI: 10.1142/S0218271802002153 · Zbl 1062.83576 [38] DOI: 10.1142/S0218271802002402 · Zbl 1062.83575 [39] DOI: 10.1103/RevModPhys.61.1 · Zbl 1129.83361 [40] DOI: 10.1142/S0218271801000718 [41] Frieman J. A., Phys. Rev. 57 pp 4642– (1998) [42] DOI: 10.1086/177125 [43] DOI: 10.1016/0550-3213(87)90128-3 [44] Ratra B., Phys. Rev. 37 pp 3406– (1988) [45] Dolgov A. D., Phys. Rev. 55 pp 5881– (1997) [46] Sahni V., Int. J. Mod. Phys. 9 pp 373– (2000) [47] DOI: 10.1070/PU1968v011n03ABEH003927 [48] DOI: 10.1146/annurev.aa.30.090192.002435 [49] DOI: 10.1007/BF02728301 [50] DOI: 10.1002/prop.2190341204 · Zbl 1144.81496 [51] DOI: 10.1086/304265 [52] DOI: 10.1086/300499 [53] DOI: 10.1016/0370-1573(85)90033-X · Zbl 0966.83541 [54] DOI: 10.1086/311140 [55] DOI: 10.1023/A:1013229818403 · Zbl 0992.83060 [56] DOI: 10.1023/A:1003651222960 · Zbl 0959.83040 [57] DOI: 10.1086/306308 [58] DOI: 10.1016/0370-2693(87)91063-X [59] DOI: 10.1088/0264-9381/5/3/013 [60] DOI: 10.1007/BF00672031 · Zbl 0699.53090 [61] DOI: 10.1086/185100 [62] Chen W., Phys. Rev. 41 pp 695– (1990) [63] DOI: 10.1007/BF02847165 [64] DOI: 10.1088/0264-9381/16/1/011 · Zbl 0960.83050 [65] Pradhan A., Int. J. Mod. Phys. 11 pp 839– (2002) [66] DOI: 10.1007/BF00755985 · Zbl 0696.53065 [67] DOI: 10.1086/173090 [68] Pradhan A., Substance 4 (14) pp 169– (2002) [69] DOI: 10.1088/0264-9381/17/18/317 · Zbl 0971.83086 [70] DOI: 10.1023/A:1013147215707 · Zbl 0997.76100 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.