×

Lag synchronization of chaotic Lur’e systems via replacing variables control. (English) Zbl 1079.93019

Summary: In this paper, we propose a method to research lag synchronization of the identical master-slave chaotic Lur’e systems via replacing variables control with time delay. By means of absolute stability theory, we prove two types of sufficient conditions for the lag synchronization: Lur’e criterion and frequency domain criterion. Based on the criteria, we suggest an optimization scheme to design the control variables. Applying the scheme to general Chua’s circuits, we obtain the parameter ranges in which the master-slave Chua’s circuits laggingly synchronize or not by varied single-variable control. Finally, we cite the examples by illustration of the results.

MSC:

93B52 Feedback control
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
94C05 Analytic circuit theory
37N35 Dynamical systems in control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aizerman M. A., Absolute Stability of Regulator Systems (1964)
[2] Badola P., Phys. Rev. 46 pp 6735– · doi:10.1103/PhysRevA.46.6735
[3] DOI: 10.1016/S0370-1573(02)00137-0 · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[4] DOI: 10.1109/31.75404 · doi:10.1109/31.75404
[5] Chua L. O., IEEE Trans. Circuits Syst. 33 pp 1073–
[6] DOI: 10.1142/S0218127497001096 · Zbl 0910.34054 · doi:10.1142/S0218127497001096
[7] DOI: 10.1142/S0218127497001977 · Zbl 0911.93044 · doi:10.1142/S0218127497001977
[8] Guemez J., Phys. Rev. 53 pp 3059–
[9] DOI: 10.1142/S0218127403006455 · Zbl 1129.93509 · doi:10.1142/S0218127403006455
[10] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[11] Pecora L. M., Phys. Rev. 44 pp 2374– · doi:10.1103/PhysRevA.44.2374
[12] Rulkov N. F., Phys. Lett. 214 pp 145– · Zbl 0972.37509 · doi:10.1016/0375-9601(96)00181-8
[13] DOI: 10.1142/S0218127497000467 · Zbl 0925.93343 · doi:10.1142/S0218127497000467
[14] DOI: 10.1109/81.633878 · doi:10.1109/81.633878
[15] DOI: 10.1109/81.641776 · doi:10.1109/81.641776
[16] DOI: 10.1142/S0218127497001059 · Zbl 0967.93508 · doi:10.1142/S0218127497001059
[17] DOI: 10.1142/S0218127498001078 · Zbl 0936.93027 · doi:10.1142/S0218127498001078
[18] DOI: 10.1109/81.774230 · Zbl 1055.93549 · doi:10.1109/81.774230
[19] J. A. K. Suykens, M. Yalcin and J. Vandewalle, Chaos and Bifurcation Control: Theory and Application, Lecture Notes in Control and Information Sciences 292, eds. G. Chen and X. Yu (Springer-Verlag, 2003) pp. 117–135.
[20] Xie H., Theory & Application of Absolute Stability (1986)
[21] DOI: 10.1142/S021812740100295X · doi:10.1142/S021812740100295X
[22] DOI: 10.1109/81.633887 · doi:10.1109/81.633887
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.