[1] |
Abramsky, S.; Jung, A.: Domain theory. Handbook of logic in computer science 3, 1-168 (1995) |

[2] |
Fan, L.; Zhang, Q. -Y.; Xiang, W. -Y.; Zheng, C. -Y.: An L-fuzzy approach to quantitative $domain(I)$ (generalized ordered set valued in frame and adjunction theory). Fuzzy systems math. (the special of theory of fuzzy sets and application) 14, 6-7 (2000) |

[3] |
L. Fan, Research of some problems in domain theory, Ph.D. Thesis, Capital Normal University, 2001 (in Chinese). |

[4] |
B. Flagg, P. Sünderhauf, K. Wagner, A logical approach to quantitative domain theory, Preprint, Elsevier, 1996, submitted. |

[5] |
U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Set Series, vol. 3, Kluwer Academic Publishers, Dordrecht, 1999. |

[6] |
Rutten, J. J. M.M.: Elements of generalized ultrametric domain theory. Theoret. comput. Sci. 170, 349-381 (1996) · Zbl 0874.68189 |

[7] |
Shi, F. -G.: Theory of L$\beta $- nested sets and L$\alpha $-nested sets and applications. Fuzzy systems math. 9, 65-72 (1995) · Zbl 1266.03063 |

[8] |
K.R. Wagner, Solving recursive domain equations with enriched categories, Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1994. |

[9] |
Zheng, C. -Y.; Fan, L.; Cui, H.: Frame and continuous lattices. (2000) |