×

zbMATH — the first resource for mathematics

Subdirectly irreducible MV-algebras. (English) Zbl 1080.06013
Summary: In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.

MSC:
06D35 MV-algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] W. J. Blok and D. Pigozzi: On the congruence extension property. Algebra Universalis 38 (1997), 391-394. · Zbl 0934.08003 · doi:10.1007/s000120050060
[2] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981. · Zbl 0478.08001
[3] J. Czelakowski and W. Dziobiak: The parametrized local deduction theorem for quasivarieties of algebras and its applications. Algebra Universalis 35 (1996), 713-419. · Zbl 0863.08011 · doi:10.1007/BF01197181
[4] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. · Zbl 0084.00704 · doi:10.2307/1993227
[5] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebras of Łukasiewicz Logics, Second Edition. Editions CLE. State University of Campinas, Campinas, S. P. Brazil, 1995.
[6] A. Dinola and A. Lettieri: Equational characterization of all varieties of MV-algebras. J. Algebra 221 (1999), 463-474. · Zbl 0946.06009 · doi:10.1006/jabr.1999.7900
[7] A. Dinola, R. Grigolia and G. Panti: Finitely generated free MV-algebras and their automorphism groups. Studia Logica 61 (1998), 65-78. · Zbl 0964.06010 · doi:10.1023/A:1005030314538
[8] M. Font, A. J. Rogriguez and A. Torrens: Wajsberg algebras. Stochastica (1984), 5-31. · Zbl 0557.03040
[9] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. · Zbl 0137.02001
[10] H. Gaitán: Quasivarieties of Wajsberg algebras. J. Non-Classical Logic 8 (1991), 79-101. · Zbl 0772.06011
[11] H. Gaitán: The number simple of bounded commoutative BCK-chains with one generator. Math. Japon. 38 (1993), 483-486.
[12] D. Mundici: A Short Introduction to the Algebras of Many-Valued Logic. Monograph.
[13] D. Mundici: MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japon. 31 (1986), 889-894. · Zbl 0633.03066
[14] A. Romanowska: Commutative BCK-chains with one generator. Math. Japon. 30 (1985), 663-670. · Zbl 0583.03051
[15] A. Romanowska and T. Traczyk: On the structure of commutative BCK-chains. Math. Japon. 26 (1981), 433-442. · Zbl 0467.03058
[16] A. Romanowska and T. Traczyk: Commutative BCK-algebras. Subdirectly irreducible algebras and varieties. Math. Japon. 27 (1982), 35-48. · Zbl 0503.03031
[17] T. Traczyk: Free bounded commutative BCK-algebras with one free generator. Demonstratio Mathemetica XVI (1983), 1049-1056. · Zbl 0547.03046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.