×

zbMATH — the first resource for mathematics

On varieties of pseudo MV-algebras. (English) Zbl 1080.06015
Summary: In this paper we investigate the relation between the lattice of varieties of pseudo MV-algebras and the lattice of varieties of lattice-ordered groups.

MSC:
06D35 MV-algebras
06F15 Ordered groups
08B15 Lattices of varieties
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] R. Cignoli, M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000. · Zbl 0937.06009
[2] A. Dvurečenskij: Pseudo \(MV\)-algebras are intervals in \(\ell \)-groups. J. Austral. Math. Soc. (Ser. A) 72 (2002), 427-445. · Zbl 1027.06014 · doi:10.1017/S1446788700036806
[3] A. Dvurečenskij: States on pseudo \(MV\)-algebras. Studia Logica · Zbl 0998.06010
[4] G. Georgescu and A. Iorgulescu: Pseudo \(MV\)-algebras: a noncommutative extension of \(MV\)-algebras. The Proceedings of the Fourth International Symposium on Economic Informatics, Buchurest, Romania, 1999, pp. 961-968. · Zbl 0985.06007
[5] G. Georgescu and A. Iorgulescu: Pseudo \(MV\)-algebras. Multiple-Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95-135. · Zbl 1014.06008
[6] J. Jakubík: Subdirect product decompositions of \(MV\)-algebras. Czechoslovak Math. J. 49 (1999), 163-173. · Zbl 0951.06012 · doi:10.1023/A:1022472528113 · eudml:30474
[7] J. Jakubík: Direct product decompositions of pseudo \(MV\)-algebras. Arch. Math. 37 (2001), 131-142. · Zbl 1070.06003 · emis:journals/AM/01-2/index.htm · eudml:232116
[8] J. Rachůnek: A non-commutative generalization of \(MV\)-algebras. Czechoslovak Math. J. 52 (2002), 255-273. · Zbl 1012.06012 · doi:10.1023/A:1021766309509
[9] J. Rachůnek: Prime spectra of non-commutative generalizations of \(MV\)-algebras. · Zbl 1058.06015 · doi:10.1007/PL00012447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.