## Catalan without logarithmic forms (after Bugeaud, Hanrot and Mihăilescu).(English)Zbl 1080.11030

The first published proof [cf. the reviewer, J. Reine Angew. Math. 572, 167–195 (2004; Zbl 1067.11017)] of Catalan’s conjecture reduces essentially to showing that $x^p-y^q=1 \tag{1}$ has no integer solutions with odd primes $$p, q$$ unless $$p \equiv 1 \mod q^2$$. This is done by using a relatively simple apparatus of cyclotomic fields. However, the case resulting from the condition $$p \equiv 1 \mod q^2$$ – which shall be denoted as non semisimple case, since the condition gives rise to non semisimple group rings – is discarded in the Crelle paper (cited above) (and also in Yu. F. Bilu’s Bourbaki presentation of the same proof [cf. Astérisque 294, 1–26, Exp. No. 909 (2004; Zbl 1094.11014)]) by using reminiscent results from older theorems based on the Baker theory.
In the present paper, dedicated to Rob Tijdeman, Yuri Bilu gives an own deduction of some simpler results which lead to the elimination of the non semisimple case. The condition $$q | h_p^-$$ for $$p < q$$ was proved by Y. Bugeaud and G. Hanrot [Mathematika 47, No. 1–2, 63–73 (2000; Zbl 1008.11011)] and was subsequently symmetrized (thus $$p, q$$ verify no additional inequality) by Mihailescu. It results that odd primes for which (1) has a solution verify $$p | h_q^-$$ and $$q | h_p^-$$. This condition helps dealing with small values of $$p$$ and $$q$$; for the remaining pairs, Bilu gives a demonstration of the fact that there are no solutions if $$q > 3(p-1)^2$$. This is a theorem of Mihailescu and leads to the conclusion that the non semisimple case has no solution. It thus yields a proof of Catalan’s conjecture “without logarithmic forms”, as stated in the title.
The paper is very well written and self-contained, being an exposition of the results of Bugeaud, Hanrot and Mihailescu, as explained by the author.

### MSC:

 11D61 Exponential Diophantine equations 11R18 Cyclotomic extensions

### Citations:

Zbl 1067.11017; Zbl 1094.11014; Zbl 1008.11011
Full Text:

### References:

  Yu.F. Bilu, Catalan’s conjecture (after Mihăilescu). Séminaire Bourbaki, Exposé 909, 55ème année (2002-2003); Astérisque 294 (2004), 1-26. · Zbl 1094.11014  Y. Bugeaud, G. Hanrot, Un nouveau critère pour l’équation de Catalan. Mathematika 47 (2000), 63-73. · Zbl 1008.11011  J. W. S. Cassels, On the equation $$a^x - b^y = 1$$, II. Proc. Cambridge Philos. Society 56 (1960), 97-103. · Zbl 0094.25702  E. Catalan, Note extraite d’une lettre adressée à l’éditeur. J. reine angew. Math. 27 (1844), 192.  S. Hyyrö, Über das Catalansche Problem. Ann. Univ. Turku Ser. AI 79 (1964), 3-10. · Zbl 0127.01904  P. Kirschenhofer, A. Pethő, R.F. Tichy, On analytical and Diophantine properties of a family of counting polynomials. Acta Sci. Math. (Szeged), 65 (1999), no. 1-2, 47-59. · Zbl 0983.11013  Ko Chao, On the diophantine equation $${x^2= y^n+1}, {xy≠ 0}$$. Sci. Sinica 14 (1965), 457-460. · Zbl 0163.04004  E. KummerCollected papers. Springer, 1975. · Zbl 0327.01019  V.A. Lebesgue, Sur l’impossibilité en nombres entiers de l’équation $${x^m=y^2+1}$$. Nouv. Ann. Math. 9 (1850), 178-181.  M. Laurent, M. Mignotte, Yu. Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (1995), 285-321. · Zbl 0843.11036  M. Mignotte, Catalan’s equation just before 2000. Number theory (Turku, 1999), de Gruyter, Berlin, 2001, pp. 247-254. · Zbl 1065.11019  M. Mignotte, Y. Roy, Catalan’s equation has no new solutions with either exponent less than $$10651$$. Experimental Math. 4 (1995), 259-268. · Zbl 0857.11012  M. Mignotte, Y. Roy, Minorations pour l’équation de Catalan. C. R. Acad. Sci. Paris 324 (1997), 377-380. · Zbl 0887.11018  P. Mihăilescu, A class number free criterion for Catalan’s conjecture. J. Number Theory 99 (2003), 225-231. · Zbl 1049.11036  P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture. J. reine angew. Math., to appear. · Zbl 1067.11017  P. Mihăilescu, On the class groups of cyclotomic extensions in the presence of a solution to Catalan’s equation. A manuscript.  T. Nagell, Des équations indéterminées $${x^2+x+1=y^n}$$ and $${x^2+x+1=3y^n}$$. Norsk Matem. Forenings Skrifter I, 2 (1921), 14 pp. (See also: Collected papers of Trygve Nagell, ed. P. Ribenboim, Queens Papers in Pure and Applied Mathematics 121, Kingston, 2002; Vol.1, pp. 79-94.)  R. Tijdeman, On the equation of Catalan. Acta Arith. 29 (1976), 197-209. · Zbl 0286.10013  L. Washington, Introduction to Cyclotomic Fields. Second edition, Graduate Texts in Math. 83, Springer, New York, 1997. · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.