Ionescu, Paltin; Naie, Daniel Rationality properties of manifolds containing quasi-lines. (English) Zbl 1080.14512 Int. J. Math. 14, No. 10, 1053-1080 (2003). Cited in 1 ReviewCited in 4 Documents MSC: 14E08 Rationality questions in algebraic geometry 14M20 Rational and unirational varieties 14D15 Formal methods and deformations in algebraic geometry 14C05 Parametrization (Chow and Hilbert schemes) PDF BibTeX XML Cite \textit{P. Ionescu} and \textit{D. Naie}, Int. J. Math. 14, No. 10, 1053--1080 (2003; Zbl 1080.14512) Full Text: DOI arXiv References: [1] L. Bădescu, M. C. Beltrametti and P. Ionescu, Complex Analysis and Algebraic Geometry – in Memory of Michael Schneider (de Gruyter, 2000) pp. 1–27. [2] Fulton W., Annals of Mathematics Studies 131, in: Introduction to Toric Varieties (1993) · Zbl 0813.14039 · doi:10.1515/9781400882526 [3] DOI: 10.2307/2374019 · Zbl 0369.14006 · doi:10.2307/2374019 [4] DOI: 10.2307/1970720 · Zbl 0169.23302 · doi:10.2307/1970720 [5] DOI: 10.1007/978-1-4757-3849-0 · doi:10.1007/978-1-4757-3849-0 [6] DOI: 10.2307/1970486 · Zbl 0122.38603 · doi:10.2307/1970486 [7] DOI: 10.2969/jmsj/02010052 · Zbl 0157.27701 · doi:10.2969/jmsj/02010052 [8] DOI: 10.1017/S0305004100064409 · Zbl 0619.14004 · doi:10.1017/S0305004100064409 [9] DOI: 10.2969/jmsj/1196890847 · Zbl 1084.14052 · doi:10.2969/jmsj/1196890847 [10] Iskovskikh V. A., Encyclopedia of Mathematical Sciences 47, in: Algebraic Geometry V, Fano Varieties (1999) [11] DOI: 10.1007/978-3-662-03276-3 · doi:10.1007/978-3-662-03276-3 [12] Kollár J., J. Algebra Geom. 1 pp 429– [13] DOI: 10.1093/qmath/45.3.343 · Zbl 0817.14019 · doi:10.1093/qmath/45.3.343 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.