×

Injective and projective properties of \(R[x]\)-modules. (English) Zbl 1080.16502

Summary: We study whether the projective and injective properties of left \(R\)-modules can be implied to the special kind of left \(R[x]\)-modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.

MSC:

16D50 Injective modules, self-injective associative rings
16D40 Free, projective, and flat modules and ideals in associative algebras
16S36 Ordinary and skew polynomial rings and semigroup rings
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] A. S. McKerrow: On the injective dimension of modules of power series. Quart. J. Math. Oxford 25 (1974), 359-368. · Zbl 0302.16027 · doi:10.1093/qmath/25.1.359
[2] L. Melkersson: Content and inverse polynomials on artinian modules. Comm. Algebra 26 (1998), 1141-1145. · Zbl 0931.13005 · doi:10.1080/00927879808826189
[3] D. G. Northcott: Injective envelopes and inverse polynomials. London Math. Soc. 3 (1974), 290-296. · Zbl 0284.13012 · doi:10.1112/jlms/s2-8.2.290
[4] S. Park: Inverse ploynomials and injective covers. Comm. Algebra 21 (1993), 4599-dy4613. · Zbl 0794.16004 · doi:10.1080/00927879308824819
[5] S. Park: The Macaulay-Northcott functor. Arch. Math. (Basel) 63 (1994), 225-230. · Zbl 0804.18009 · doi:10.1007/BF01189824
[6] S. Park: Gorenstein rings and inverse polynomials. Comm. Algebra 28 (2000), 785-789. · Zbl 0957.13005 · doi:10.1080/00927870008826859
[7] S. Park: Left global dimensions and inverse polynomil modules. Internat. J. Math. Math. Sci. 24 (2000), 437-440. · Zbl 0964.16006 · doi:10.1155/S0161171200004129
[8] S. Park: The general structure of inverse polynomial modules. Czechoslovak Math. J. 51(126) (2001), 343-349. · Zbl 0983.16006 · doi:10.1023/A:1013798914813
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.