×

zbMATH — the first resource for mathematics

A full characterization of multipliers for the strong \(\varrho \)-integral in the Euclidean space. (English) Zbl 1080.26007
Summary: We study a generalization of the classical Henstock-Kurzweil integral, known as the strong \(\rho \)-integral, introduced by J. JarnĂ­k and J. Kurzweil. Let \((\mathcal S_{\rho } (E), \| \cdot \| )\) be the space of all strongly \(\varrho \)-integrable functions on a multidimensional compact interval \(E\), equipped with the Alexiewicz norm \(\| \cdot \| \). We show that each element in the dual space of \((\mathcal S_{\rho } (E), \| \cdot \| )\) can be represented as a strong \(\rho \)-integral. Consequently, we prove that \(fg\) is strongly \(\rho \)-integrable on \(E\) for each strongly \(\rho \)-integrable function \(f\) if and only if \(g\) is almost everywhere equal to a function of bounded variation (in the sense of Hardy-Krause) on \(E\).

MSC:
26A39 Denjoy and Perron integrals, other special integrals
46E99 Linear function spaces and their duals
46G10 Vector-valued measures and integration
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. Alexiewicz: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1 (1948), 289-293. · Zbl 0037.32302
[2] R. A. Gordon: The Integrals of Lebesgue. Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994. · Zbl 0807.26004
[3] J. Jarn?k and Kurzweil: Perron-type integration on n-dimensional intervals and its prop-erties. Czechoslovak Math. J. 45 (120) (1995), 79-106. · Zbl 0832.26009
[4] J. Kurzweil: On multiplication of Perron integrable functions. Czechoslovak Math. J. 23 (98) (1973), 542-566. · Zbl 0269.26007
[5] J. Kurzweil and J. Jarn?k: Perron-type integration on n-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czechoslovak Math. J. 46 (121) (1996), 1-20. · Zbl 0902.26007
[6] Lee Peng Yee: Lanzhou Lectures on Henstock integration. World Scientific, 1989. · Zbl 0699.26004
[7] Lee Peng Yee and Rudolf V?born?: The integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. · Zbl 0941.26003
[8] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: Characterisation of multipliers for the double Henstock integrals. Bull. Austral. Math. Soc. 54 (1996), 441-449. · Zbl 0894.26003
[9] Lee Tuo Yeong: Multipliers for some non-absolute integrals in the Euclidean spaces. Real Anal. Exchange 24 (1998/99), 149-160. · Zbl 0940.26007
[10] G. Q. Liu: The dual of the Henstock-Kurzweil space. Real Anal. Exchange 22 (1996/97), 105-121.
[11] E. J. McShane: Integration. Princeton Univ. Press, 1944.
[12] Piotr Mikusi?ski and K. Ostaszewski: The space of Henstock integrable functions II. In: New integrals. Proc. Henstock Conf., Coleraine / Ireland (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, eds.). 1988; Lecture Notes Math. vol. 1419, Springer-Verlag, Berlin, Heideberg, New York, 1990, pp. 136-149.
[13] K. M. Ostaszewski: The space of Henstock integrable functions of two variables. Internat. J. Math. Math. Sci. 11 (1988), 15-22. · Zbl 0662.26003
[14] S. Saks: Theory of the Integral, second edition. New York, 1964. [ · Zbl 1196.28001
[15] W. L. C. Sargent: On the integrability of a product. J. London Math. Soc. 23 (1948), 28-34. · Zbl 0031.29201
[16] W. H. Young: On multiple integration by parts and the second theorem of the mean. Proc. London Math. Soc. 16 (1918), 273-293.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.