zbMATH — the first resource for mathematics

A new proof of the Gerritzen-Grauert theorem. (English) Zbl 1080.32021
The Gerritzen-Grauert theorem [see, for example, S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analytic geometry (1984; Zbl 0539.14017)] is one of the most fundamental results of rigid analitic geometry. It describes locally closed immersions between affinoid varieties, and this description implies the fact that any affinoid variety is a finite union of rational domains. The latter is used in the computations of Čech cohomology for affinoid varieties, and also in Berkovich’s non-Archimedean analytic geometry.
The author gives a new proof of the Gerritzen-Grauert theorem, more elementary than the known ones and allowing a generalization from the rigid analytic geometry based on the class of strictly affinoid algebras to the case of arbitrary affinoid algebras.

32P05 Non-Archimedean analysis
14G22 Rigid analytic geometry
32C99 Analytic spaces
Full Text: DOI
[1] Berkovich, V.: Spectral theory and analytic geometry over non-Archimedean fields. Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, 1990 · Zbl 0715.14013
[2] Berkovich, V.: Étale cohomology for non-Archimedean analytic spaces. Publ. Math. IHES 78, 5–161 (1993) · Zbl 0804.32019
[3] Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis. A systematic approach to rigid analytic geometry. Springer, Berlin-Heidelberg-New York, 1984 · Zbl 0539.14017
[4] Bosch, S., Lütkebohmert, W.: Formal and rigid geometry. II. Flattening techniques. Math. Ann. 296, 403–429 (1993) · Zbl 0808.14018
[5] Ducros, A.: Parties semi-algébriques d’une variété algébrique p-adique. Manuscripta Math. 111, 513–528 (2003) · Zbl 1020.14017
[6] Grothendieck, A., Dieudonne, J.: Éléments de géométrie algébrique I. Le langage des schémas. Publ. Math. IHES 4, 1–228 (1960)
[7] Gerritzen, L., Grauert, H.: Die Azyklizität der affinoiden überdeckungen. 1969 Global Analysis (Papers in Honor of K. Kodaira) 159–184, Univ. Tokyo Press, Tokyo · Zbl 0197.17303
[8] Gruson, L.: Théorie de Fredholm p-adique. Bull. Soc. Math. France 94, 67–95 (1966) · Zbl 0149.34702
[9] Raynaud, M.: Géométrie analytique rigide d’après Tate, Kiehl,. . . . Bull. Soc. Math. Fr. Mém. 39/40, 319–327 (1974) · Zbl 0299.14003
[10] Tate, J.: Rigid analytic spaces. Invent. Math. 12, 257–289 (1971) · Zbl 0212.25601
[11] Temkin, M.: On local properties of non-Archimedean analytic spaces II. Isr. J. of Math. 140, 1–27 (2004) · Zbl 1066.32025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.