zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcation analysis in a limit cycle oscillator with delayed feedback. (English) Zbl 1080.34054
The paper classifies the location and criticality of the Hopf bifurcations, depending on parameters, in the the limit cycle oscillator with delayed feedback $\dot z(t)-(a+i\omega-\vert z(t)\vert ^2)z(t)=-k_1z(t-\tau)-k_2z^2(t-\tau)$, where $z$ is complex.

MSC:
34K18Bifurcation theory of functional differential equations
34K20Stability theory of functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Reddy, D.; Sen, A.; Johnston, G.: Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. Physica D 144, 335-357 (2000) · Zbl 0973.34061
[2] Zou, S.; Liao, X.; Yu, J.; Wong, K.: Chaos and its synchronization in two-neuron systems with discrete delays. Chaos, solitons & fractals 21, 133-142 (2004) · Zbl 1048.37527
[3] Aronson, D.; Ermentrout, G.; Koppel, N.: Amplitude response of coupled oscillators. Physica D 41, 403 (1990) · Zbl 0703.34047
[4] Schuster, H.; Wagnar, P.: Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. theoret. Phys 81, 939-945 (1989)
[5] Niebur, E.; Schuster, H.; Kammen, D.: Colective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys. rev. Lett 67, 2753-2756 (1991)
[6] Nakamura, Y.; Tominaga, F.; Munakata, T.: Clustering behavior of time-delayed nearest-neighbor coupled oscillators. Phys. rev. E 49, 4849-4856 (1994)
[7] Kim, S.; Park, S. H.; Ryu, C. S.: Multistability in coupled oscillator systems with time delay. Phys. rev. Lett 79, 2911-2914 (1997)
[8] Reddy, D.; Sen, A.; Jonston, G.: Time delay induced death in coupled limit cycle oscillators. Phys. rev. Lett 80, 5109-5112 (1998)
[9] Reddy, D.; Sen, A.; Jonston, G.: Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129, 15-34 (1999) · Zbl 0981.34022
[10] Yeung, M.; Strogatz, S.: Time delay in the Kuramoto model of coupled oscillators. Phys. rev. Lett 82, 648-651 (1999)
[11] Hale, J.; Lunel, S. Verduyn: Introduction to functional differential equations. (1993) · Zbl 0787.34002
[12] Goppalsamy, K.: Stability and oscillations in delay differential equations of population dynamics. (1992)
[13] Wu, J.: Introduction to neural dynamics and signal transmission delay. (2001) · Zbl 0977.34069
[14] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H.: Theory and application of Hopf bifurcation. (1981) · Zbl 0474.34002
[15] Meng, X.; Wei, J.: Stability and bifurcation of mutual system with time delay. Chaos, solitons & fractals 21, 729-740 (2004) · Zbl 1048.34122
[16] Song, Y.; Wei, J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos, solitons & fractals 22, 75-91 (2004) · Zbl 1112.37303
[17] Yuan, S.; Song, Y.; Han, M.: Direction and stability of bifurcating periodic solutions of a chemostat model with two distributed delays. Chaos, solitons & fractals 21, 1109-1123 (2004) · Zbl 1129.34328
[18] Liao, X.; Wong, K.; Leung, C.; Wu, Z.: Hopf bifurcation and chaos in a single delayed neural equation with non-monotonic activation function. Chaos, solitons & fractals 12, 1352-1547 (2001) · Zbl 1012.92005
[19] Li, C.; Liao, X.; Yu, J.: Hopf bifurcation in a prototype delayed system. Chaos, solitons & fractals 19, 779-787 (2004) · Zbl 1053.37026
[20] Ruan, S.; Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. continuous, discrete impuls. Syst. A: math. Anal 10, 863-874 (2003) · Zbl 1068.34072