zbMATH — the first resource for mathematics

On the instability of linear nonautonomous delay systems. (English) Zbl 1080.34543
Summary: The unstable properties of the linear nonautonomous delay system \(x'(t) = A (t) x (t) + B (t) x (t - r (t))\), with nonconstant delay \(r(t)\), are studied. It is assumed that the linear system \(y'(t) = (A (t) + B (t)) y (t)\) is unstable, the instability being characterized by a nonstable manifold defined from a dichotomy to this linear system. The delay  \(r(t)\) is assumed to be continuous and bounded. Two kinds of results are given, those concerning conditions that do not include the properties of the delay function \(r(t)\) and the results depending on the asymptotic properties of the delay function.

34D20 Stability of solutions to ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text: DOI EuDML
[1] E. A. Coddington and N. Levinson: Theory of Ordinary Differential Equations. McGill-Hill, New York, 1975. · Zbl 0064.33002
[2] K. L. Cooke: Functional differential equations close to differential equations. Bull. Amer. Math. Soc. 72 (1966), 285-288. · Zbl 0151.10401 · doi:10.1090/S0002-9904-1966-11494-5
[3] W. A. Coppel: On the stability of ordinary differential equations. J. London Math. Soc. 39 (1964), 255-260. · Zbl 0128.08205 · doi:10.1112/jlms/s1-39.1.255
[4] W. A. Coppel: Dichotomies in Stability Theory. Lecture Notes in Mathematics Vol. 629. Springer Verlag, Berlin, 1978. · Zbl 0376.34001
[5] L. E. Elsgoltz and S. B. Norkin: Introduction to the Theory of Differential Equations with Deviating Arguments. Nauka, Moscow, 1971.
[6] J. Gallardo and M. Pinto: Asymptotic integration of nonautonomous delay-differential systems. J. Math. Anal. Appl. 199 (1996), 654-675. · Zbl 0853.34069 · doi:10.1006/jmaa.1996.0168
[7] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Populations Dynamics. Kluwer, Dordrecht, 1992. · Zbl 0752.34039
[8] I. Győri and M. Pituk: Stability criteria for linear delay differential equations. Differential Integral Equations 10 (1997), 841-852. · Zbl 0894.34064
[9] N. Rouche, P. Habets and M. Laloy: Stability Theory by Liapounov’s Second Method. App. Math. Sciences 22. Springer, Berlin, 1977. · Zbl 0364.34022 · doi:10.1007/978-1-4684-9362-7
[10] J. K. Hale: Theory of Functional Differential Equations. Springer-Verlag, New York, 1977. · Zbl 0352.34001
[11] J. K. Hale and S. M. Verduyn Lunel: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993. · Zbl 0787.34002
[12] R. Naulin: Instability of nonautonomous differential systems. Differential Equations Dynam. Systems 6 (1998), 363-376. · Zbl 0992.34034
[13] R. Naulin: Weak dichotomies and asymptotic integration of nonlinear differential systems. Nonlinear Studies 5 (1998), 201-218. · Zbl 0918.34013
[14] R. Naulin: Functional analytic characterization of a class of dichotomies. Unpublished work (1999).
[15] R. Naulin and M. Pinto: Roughness of \((h,k)\)-dichotomies. J. Differential Equations 118 (1995), 20-35. · Zbl 0836.34047 · doi:10.1006/jdeq.1995.1065
[16] R. Naulin and M. Pinto: Admissible perturbations of exponential dichotomy roughness. J. Nonlinear Anal. TMA 31 (1998), 559-571. · Zbl 0902.34041 · doi:10.1016/S0362-546X(97)00423-9
[17] R. Naulin and M. Pinto: Projections for dichotomies in linear differential equations. Appl. Anal. 69 (1998), 239-255. · Zbl 0899.34008 · doi:10.1080/00036819808840660
[18] M. Pinto: Non autonomous semilinear differential systems: Asymptotic behavior and stable manifolds. Preprint (1997).
[19] M. Pinto: Dichotomy and asymptotic integration. Contributions USACH (1992), 13-22.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.