zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrable theory of the perturbation equations. (English) Zbl 1080.37578
Summary: An integrable theory is developed for the perturbation equations engendered from small disturbances of solutions. It includes various integrable properties of the perturbation equations, such as hereditary recursion operators, master symmetries, linear representations (Lax and zero curvature representations) and Hamiltonian structures, and provides us with a method of generating hereditary operators, Hamiltonian operators and symplectic operators starting from the known ones. The resulting perturbation equations give rise to a sort of integrable coupling of soliton equations. Two examples (MKdV hierarchy and KP equation) are carefully carried out.

MSC:
37J35Completely integrable systems, topological structure of phase space, integration methods
35Q53KdV-like (Korteweg-de Vries) equations
37J40Perturbations, normal forms, small divisors, KAM theory, Arnol’d diffusion
WorldCat.org
Full Text: DOI
References:
[1] Karpman, V. I.: Soliton evolution in the presence of perturbation. Phys. scr. 20, 462-478 (1979) · Zbl 1063.35531
[2] Keener, J. P.; Mclaughlin, D. W.: Solitons under perturbations. Phys. rev. A 16, 777-790 (1977)
[3] Kodama, Y.; Ablowitz, M. J.: Perturbations of solitons and solitary waves. Stud. appl. Math. 64, 225-245 (1981) · Zbl 0486.76029
[4] Olver, P. J.: Hamiltonian perturbation theory and water waves. Contemporary mathematics 28, 231-249 (1984) · Zbl 0521.76018
[5] Herman, R. L.: A direct approach to studying soliton perturbations. J. phys. A, math. Gen. 23, 2327-2362 (1990) · Zbl 0725.35088
[6] Tanaka, M.: Perturbations on the K-dv equation--an approach based on the multiple time scale expansion. J. phys. Soc. jpn 49, 807-812 (1980)
[7] Grimshaw, R.; Mitsudera, H.: Slowly varying solitary wave solutions of the perturbed Korteweg-de Vries equation revisited. Stud. appl. Math. 90, 75-86 (1993) · Zbl 0783.35062
[8] Elgin, J. N.; Brabec, T.; Kelly, S. M. J.: A perturbative theory of soliton propagation in the presence of the third order dispersion. Opt. commun. 114, 321-328 (1995)
[9] Ballantyne, G. J.; Gough, P. T.; Taylor, D. P.: Deriving average soliton equations with a perturbation method. Phys. rev. E 5, 825-828 (1995)
[10] Currò, C.; Donato, A.; Povzner, A. Ya.: Perturbation method for a generalized burger’s equation. Int. J. Non-linear mech. 27, 149-155 (1992) · Zbl 0825.35103
[11] Matsuno, Y.: Multisoliton perturbation theory for the Benjamin-Ono equation and its application to real physical systems. Phys. rev. E 51, 1471-1483 (1995)
[12] Kivshar, Y. S.; Malomed, B. A.: Dynamics of solitons in nearly integrable systems. Rev. mod. Phys. 61, 763-915 (1989)
[13] Tamizhmani, K. M.; Lakshmanan, M.: Complete integrability of the Korteweg-de Vries equation under perturbation around its solution: Lie-Bäcklund symmetry approach. J. phys. A, math. Gen. 16, 3773-3782 (1983) · Zbl 0544.35079
[14] Ma, W. X.; Fuchssteiner, B.: The bi-Hamiltonian structure of the perturbation equations of KdV hierarchy. Phys. lett. A 213, 49 (1995) · Zbl 1073.37537
[15] Kraenkel, R. A.; Manna, M. A.; Pereira, J. G.: The Korteweg-de Vries hierarchy and long water-waves. J. math. Phys. 36, 307-320 (1995) · Zbl 0826.76009
[16] Kraenkel, R. A.; Manna, M. A.; Montero, J. C.; Pereira, J. G.: Boussinesq solitary-wave as a multiple-time solution of the Korteweg-de Vries hierarchy. J. math. Phys. 36, 6822-6828 (1995) · Zbl 0844.35108
[17] Fuchssteiner, B.; Fokas, A. S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47-66 (1981) · Zbl 1194.37114
[18] Fuchssteiner, B.: Coupling of completely integrable systems: the perturbation bundle. Applications of analytic and geometric methods to nonlinear differential equations, 125-138 (1993) · Zbl 0786.35123
[19] Oevel, W.: Dirac constraints in the field theory: lifts of Hamiltonian systems to the cotangent bundle. J. math. Phys. 29, 210-219 (1988) · Zbl 0656.70011
[20] Ma, W. X.: Poisson manifolds and classical Hamiltonian operators. Northeastern mathematical journal 6, 346-356 (1990) · Zbl 0733.58017
[21] Fuchssteiner, B.: Application of hereditary symmetries to nonlinear evolution equations. Nonlinear anal. Theory methods appl. 3, 849-862 (1979) · Zbl 0419.35049
[22] Gel’fand, I. M.; Dorfman, I. Y.: Hamiltonian operators and algebraic structures related to them. Funct. anal. Appl. 13, 248-262 (1979)
[23] Magri, F.: A simple model of the integrable Hamiltonian equation. J. math. Phys. 19, 1156-1162 (1978) · Zbl 0383.35065
[24] Chen, H. H.; Lin, J. E.: On the integrability of multidimensional nonlinear evolution equations. J. math. Phys. 28, 347-350 (1987) · Zbl 0663.35066
[25] Ma, W. X.: Symmetry constraint of mkdv equations by binary nonlinearization. Physica A 219, 467-481 (1995)
[26] Wadati, M.: The modified Korteweg-de Vries equation. J. phys. Soc. jpn 34, 1289-1296 (1973)
[27] Ma, W. X.: K-symmetries and ${\tau}$-symmetries of evolution equations and their Lie algebras. J. phys. A, math. Gen. 23, 2707-2716 (1990) · Zbl 0722.35078
[28] Ma, W. X.: The algebraic structures of isospectral Lax operators and applications to integrable equations. J. phys. A, math. Gen. 25, 5329-5343 (1992) · Zbl 0782.35072
[29] Zakharov, V. E.; Konopelchenko, B. G.: On the theory of recursion operator. Commun. math. Phys. 94, 483-509 (1984) · Zbl 0594.35080
[30] Dorfman, I. Ya.; Fokas, A. S.: Hamiltonian theory over noncommutative rings and integrability in multidimensions. J. math. Phys. 33, 2504-2514 (1992) · Zbl 0771.58025
[31] Schwarz, F.: Symmetries of the two-dimensional Korteweg-de Vries equation. J. phys. Soc. jpn 51, 2387-2388 (1982)
[32] David, D.; Kamran, N.; Levi, D.; Winternitz, P.: Symmetry reduction for the Kadomtsev-Petviashvili equation using a loop algebra. J. math. Phys. 27, 1225-1237 (1986) · Zbl 0598.35117
[33] Ma, W. X.: The generators of vector fields and the time dependent symmetries of evolution equations. Sci. China A 34, 769-782 (1991) · Zbl 0752.35062
[34] Fuchssteiner, B.: Master symmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations. Prog. theor. Phys. 70, 1508-1522 (1983) · Zbl 1098.37536