×

On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support. (English) Zbl 1080.46025

Summary: We study Beurling type distributions in the Hankel setting. We consider the space \({\mathcal E}(w)'\) of Beurling type distributions on \((0,\infty )\) having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space \({\mathcal E}(w)'\). We also establish Paley–Wiener type theorems for Hankel transformations of distributions in \({\mathcal E}(w)'\).

MSC:

46F12 Integral transforms in distribution spaces
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] G. Altenburg: Bessel transformationen in Raumen von Grundfunktionen uber dem Intervall \(\Omega = (0, \infty )\) un derem Dualraumen. Math. Nachr. 108 (1982), 197-218. · Zbl 0528.46035 · doi:10.1002/mana.19821080116
[2] M. Belhadj and J. J. Betancor: Beurling distributions and Hankel transforms. Math. Nachr 233-234 (2002), 19-45. · Zbl 1030.46047 · doi:10.1002/1522-2616(200201)233:1<19::AID-MANA19>3.0.CO;2-B
[3] M. Belhadj and J. J. Betancor: Hankel transformation and Hankel convolution of tempered Beurling distributions. Rocky Mountain J. Math 31 (2001), 1171-1203. · Zbl 1148.46305 · doi:10.1216/rmjm/1021249437
[4] J. J. Betancor and I. Marrero: The Hankel convolution and the Zemanian spaces \(B_\mu \) and \(B_\mu ^{\prime }\). Math. Nachr. 160 (1993), 277-298. · Zbl 0796.46023
[5] J. J. Betancor and I. Marrero: Structure and convergence in certain spaces of distributions and the generalized Hankel convolution. Math. Japon. 38 (1993), 1141-1155. · Zbl 0795.46023
[6] J. J. Betancor and I. Marrero: New spaces of type \(H_\mu \) and the Hankel transformation. Integral Transforms and Special Functions 3 (1995), 175-200. · Zbl 0832.46035 · doi:10.1080/10652469508819075
[7] J. J. Betancor and L. Rodríguez-Mesa: Hankel convolution on distribution spaces with exponential growth. Studia Math. 121 (1996), 35-52. · Zbl 0862.46021
[8] A. Beurling: Quasi-analyticity and General Distributions. Lectures 4 and 5. A.M.S. Summer Institute, Stanford, 1961.
[9] G. Björck: Linear partial differential operators and generalized distributions. Ark. Math. 6 (1966), 351-407. · Zbl 0166.36501 · doi:10.1007/BF02590963
[10] J. Bonet, C. Fernández and R. Meise: Characterization of the \(w\)-hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Mathematica 25 (2000), 261-284. · Zbl 0956.46028
[11] R. W. Braun and R. Meise: Generalized Fourier expansions for zero-solutions of surjective convolution operators in \({\mathcal D}_{\{ w\} }(R)^{\prime }\). Arch. Math. 55 (1990), 55-63. · Zbl 0674.46021 · doi:10.1007/BF01199116
[12] R. W. Braun, R. Meise and B. A. Taylor: Ultradifferentiable functions and Fourier analysis. Results in Maths. 17 (1990), 206-237. · Zbl 0735.46022 · doi:10.1007/BF03322459
[13] F. M. Cholewinski: A Hankel convolution complex inversion theory. Mem. Amer. Math. Soc. 58 (1965). · Zbl 0137.30901
[14] S. J. L. van Eijndhoven and M. J. Kerkhof: The Hankel transformation and spaces of type \(W\). Reports on Appl. and Numer. Analysis, 10. Dept. of Maths. and Comp. Sci., Eindhoven University of Technology, 1988.
[15] D. T. Haimo: Integral equations associated with Hankel convolutions. Trans. Amer. Math. Soc. 116 (1965), 330-375. · Zbl 0135.33502 · doi:10.2307/1994121
[16] C. S. Herz: On the mean inversion of Fourier and Hankel transforms. Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999. · Zbl 0059.09901 · doi:10.1073/pnas.40.10.996
[17] I. I. Hirschman, Jr.: Variation diminishing Hankel transforms. J. Analyse Math. 8 (1960/61), 307-336. · Zbl 0099.31301 · doi:10.1007/BF02786854
[18] L. Hörmander: Hypoelliptic convolution equations. Math. Scand. 9 (1961), 178-184. · Zbl 0102.11003
[19] I. Marrero and J. J. Betancor: Hankel convolution of generalized functions. Rendiconti di Matematica 15 (1995), 351-380. · Zbl 0833.46026
[20] J. M. Méndez: On the Bessel transforms of arbitrary order. Math. Nachr. 136 (1988), 233-239. · Zbl 0656.46030 · doi:10.1002/mana.19881360116
[21] J. M. Méndez and A. M. Sánchez: On the Schwartz’s Hankel transformation of distributions. Analysis 13 (1993), 1-18. · Zbl 0792.46028 · doi:10.1524/anly.1993.13.12.1
[22] L. Schwartz: Theorie des distributions. Hermann, Paris, 1978. · Zbl 0399.46028
[23] J. de Sousa-Pinto: A generalized Hankel convolution. SIAM J. Appl. Math. 16 (1985), 1335-1346. · Zbl 0592.46038 · doi:10.1137/0516097
[24] K. Stempak: La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C.R. Acad. Sci. Paris 303 (Serie I) (1986), 15-19. · Zbl 0591.42014
[25] G. N. Watson: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, 1959.
[26] A. H. Zemanian: A distributional Hankel transformation. SIAM J. Appl. Math. 14 (1966), 561-576. · Zbl 0154.13803 · doi:10.1137/0114049
[27] A. H. Zemanian: The Hankel transformation of certain distribution of rapid growth. SIAM J. Appl. Math. 14 (1966), 678-690. · Zbl 0154.13804 · doi:10.1137/0114056
[28] A. H. Zemanian: Generalized Integral Transformations. Interscience Publishers, New York, 1968. · Zbl 0181.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.