zbMATH — the first resource for mathematics

On Pettis integrability. (English) Zbl 1080.46515
Summary: Assuming that \((\Omega , \Sigma , \mu )\) is a complete probability space and \(X\) a Banach space, in this paper we investigate the problem of the \(X\)-inheritance of certain copies of \(c_0\) or \(\ell _{\infty }\) in the linear space of all [classes of] \(X\)-valued \(\mu \)-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.

46G10 Vector-valued measures and integration
28B05 Vector-valued set functions, measures and integrals
Full Text: DOI EuDML
[1] P. Cembranos and J. Mendoza: Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676. Springer, 1997. · Zbl 0902.46017 · doi:10.1007/BFb0096765
[2] J. Diestel: Sequences and Series in Banach Spaces. GTM 92. Springer Verlag. New York-Berlin-Heidelberg-Tokyo, 1984.
[3] J. Diestel and J. Uhl: Vector Measures. Math Surveys 15. Amer. Math. Soc. Providence, 1977.
[4] L. Drewnowski: Copies of \(\ell _{\infty }\) in an operator space. Math. Proc. Camb. Phil. Soc. 108 (1990), 523-526. · Zbl 0745.46011 · doi:10.1017/S0305004100069401
[5] L. Drewnowski, M. Florencio and P. J. Paúl: The space of Pettis integrable functions is barrelled. Proc. Amer. Math. Soc. 114 (1992), 687-694. · Zbl 0747.46026 · doi:10.2307/2159390
[6] D. van Dulst: Characterizations of Banach Spaces not containing \(\ell _{1}\). CWI Tract. Amsterdam, 1989. · Zbl 0684.46017
[7] J. C. Ferrando: On sums of Pettis integrable random elements. Quaestiones Math. 25 (2002), 311-316. · Zbl 1036.46010 · doi:10.2989/16073600209486018
[8] F. J. Freniche: Embedding \(c_0\) in the space of Pettis integrable functions. Quaestiones Math. 21 (1998), 261-267. · Zbl 0963.46025 · doi:10.1080/16073606.1998.9632045
[9] E. Hewitt and K. Stromberg: Real and Abstract Analysis. GTM 25. Springer Verlag, 1965. · Zbl 0137.03202
[10] K. Musial: The weak Radon-Nikodým property in Banach spaces. Studia Math. 64 (1979), 151-173. · Zbl 0405.46015 · eudml:218228
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.