On some structural properties of Banach function spaces and boundedness of certain integral operators. (English) Zbl 1080.47040

Summary: In this paper, the notions of uniformly upper and uniformly lower \(\ell \)-estimates for Banach function spaces are introduced. Further, the pair \((X,Y)\) of Banach function spaces is characterized, where \(X\) and \(Y\) satisfy uniformly a lower \(\ell \)-estimate and uniformly an upper \(\ell \)-estimate, respectively. The integral operator from \(X\) into \(Y\) of the form \[ K f(x)=\varphi (x) \int _0^x k(x,y)f(y)\psi (y)\,\text dy \] is studied, where \(k\), \(\varphi \), \(\psi \) are prescribed functions under some local integrability conditions, the kernel \(k\) is non-negative and is assumed to satisfy certain additional conditions, notably one of monotone type.


47G10 Integral operators
45P05 Integral operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI EuDML Link


[1] C. Bennett and R. Sharpley: Interpolation of Operators. Acad. Press, Boston, 1988. · Zbl 0647.46057
[2] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces. II. Function Spaces. Springer-Verlag, 1979. · Zbl 0403.46022
[3] A. V. Bukhvalov, V. B. Korotkov, A. G. Kusraev, S. S. Kutateladze and B. M. Makarov: Vector Lattices and Integral Operators. Nauka, Novosibirsk, 1992. (In Russian.) · Zbl 0752.46001
[4] J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer-Verlag, Berlin-Heidelberg-New York, 1983. · Zbl 0557.46020
[5] V. D. Stepanov: Nonlinear Analysis. Function Spaces and Applications 5. Olympia Press, 1994, pp. 139-176.
[6] E. N. Lomakina and V. D. Stepanov: On Hardy type operators in Banach function spaces on half-line. Dokl. Akad. Nauk 359 (1998), 21-23. (In Russian.) · Zbl 0958.47022
[7] P. Oinarov: Two-side estimates of the norm of some classes of integral operators. Trudy Mat. Inst. Steklov. 204 (1993), 240-250. (In Russian.)
[8] A. V. Bukhvalov: Generalization of Kolmogorov-Nagumo’s theorem on tensor product. Kachestv. pribl. metod. issledov. operator. uravnen. 4 (1979), 48-65. (In Russian.)
[9] E. I. Berezhnoi: Sharp estimates for operators on cones in ideal spaces. Trudy Mat. Inst. Steklov. 204 (1993), 3-36. (In Russian.)
[10] E. I. Berezhnoi: Two-weighted estimations for the Hardy?Littlwood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127 (1999), 79-87. · Zbl 0918.42011
[11] Q. Lai: Weighted modular inequalities for Hardy type operators. Proc. London Math. Soc. 79 (1999), 649-672. · Zbl 1030.46030
[12] I. I. Sharafutdinov: On the basisity of the Haar system in L p(t) ([0; 1]) spaces. Mat. Sbornik 130 (1986), 275-283. (In Russian.)
[13] I. I. Sharafutdinov: The topology of the space L p(t) ([0; 1]). Mat. Zametki 26 (1976), 613-632. (In Russian.)
[14] O. Kov??ik and J. R?kosn?k: On spaces L p(x) and W k;p(x). Czechoslovak Math.J. 41 (1991), 592-618.
[15] H. H. Schefer: Banach Lattices and Positive Operators. Springer-Verlag, Berlin-Heidel-berg-New York, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.