Shi, Fu-Gui A new notion of fuzzy compactness in \(L\)-topological spaces. (English) Zbl 1080.54004 Inf. Sci. 173, No. 1-3, 35-48 (2005). Considering \(L\) a completely distributive de Morgan algebra, the author introduces a notion of fuzzy compactness in \(L\)-topological spaces called \(S^*\)-compactness. He compares various notions of fuzzy compactness introduced over the years by various authors. Besides giving basic facts, the Tychonoff theorem for \(S^*\)-compactness is obtained and it is shown that the \(L\)-fuzzy unit interval \(I(L)\) is \(S^*\)-compact. Characterizations of \(S^*\)-compactness by nets are provided. Reviewer: T. M. G. Ahsanullah (Riyadh) Cited in 11 Documents MSC: 54A40 Fuzzy topology Keywords:\(L\)-topology; \(S^*\)-compactness; fuzzy unit interval PDF BibTeX XML Cite \textit{F.-G. Shi}, Inf. Sci. 173, No. 1--3, 35--48 (2005; Zbl 1080.54004) Full Text: DOI References: [1] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24, 182-190 (1968) · Zbl 0167.51001 [2] Dwinger, P., Characterizations of the complete homomorphic images of a completely distributive complete lattice, I, Nederl. Akad. Wetensch. Indag. Math., 44, 403-414 (1982) · Zbl 0503.06012 [3] Gantner, T. E.; Steinlage, R. C.; Warren, R. H., Compactness in fuzzy topological spaces, J. Math. Anal. Appl., 62, 547-562 (1978) · Zbl 0372.54001 [4] Gierz, G., A Compendium of Continuous Lattices (1980), Springer Verlag: Springer Verlag Berlin · Zbl 0452.06001 [5] Goguen, The fuzzy Tychonoff Theorem, J. Math. Anal. Appl., 43, 734-742 (1973) · Zbl 0278.54003 [6] Hutton, B., Normality in fuzzy topological spaces, J. Math. Anal. Appl., 50, 74-79 (1975) · Zbl 0297.54003 [7] Kubiák, T., The topological modification of the \(L\)-fuzzy unit interval, (Rodabaugh, S. E.; Klement, E. P.; Höhle, U., Applications of Category Theory to Fuzzy Subsets (1992), Kluwer Academic Publishers), 275-305, (Chapter 11) · Zbl 0766.54006 [8] Li, Z. F., Compactness in fuzzy topological spaces, Chinese Kexue Tongbao, 6, 321-323 (1983) [9] Liu, Y. M., Compactness and Tychnoff Theorem in fuzzy topological spaces, Acta Math. Sinica, 24, 260-268 (1981) · Zbl 0495.54004 [10] Liu, Y. M.; Luo, M. K., Fuzzy Topology (1997), World Scientific: World Scientific Singapore [11] Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56, 621-633 (1976) · Zbl 0342.54003 [12] Lowen, R., A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., 64, 446-454 (1978) · Zbl 0381.54004 [13] Rodabaugh, S. E., Fuzzy real lines and dual real lines as poslat topological, uniform, and metric ordered semirings with unity, (Höhle, U.; Rodabaugh, S. E., Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (1999), Kluwer Academic Publishers) · Zbl 1021.54005 [14] Shi, F.-G., \(L\)-fuzzy sets and prime element nested sets, J. Math. Res. Expos., 16, 398-402 (1996), (in Chinese) · Zbl 0899.04004 [15] Shi, F.-G.; Zheng, C.-Y., O-convergence of fuzzy nets and its applications, Fuzzy Sets Syst., 140, 499-507 (2003) · Zbl 1086.54501 [16] Wang, G. J., A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl., 94, 1-23 (1983) · Zbl 0512.54006 [17] Wang, G. J., Theory of \(L\)-Fuzzy Topological Space (1988), Shaanxi Normal University Press: Shaanxi Normal University Press Xian, (in Chinese) [18] Zhao, D. S., The N-compactness in \(L\)-fuzzy topological spaces, J. Math. Anal. Appl., 128, 64-70 (1987) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.