A generalized KKMF principle. (English) Zbl 1080.54028

Let \(E\) be a vector space and \(A\subset E\) an arbitrary subset. A function \(F: A\to 2^E\) is called a KKM map provided \(\text{conv}\{x_1,x_2,\dots, x_k\}\subset\bigcup^k_{j=1} F(x_j)\) for each finite subset \(\{x_1,x_2,\dots, x_k\}\subset A\). Consider a subset \(X\) of a topological vector space \(Y\). A family \(\{(C_i, K_i)\}_{i\in I}\) of pairs of sets is said to be coercing for a map \(F: X\to Y\) if and only if:
(1) for each \(i\in I\), \(C_i\) is contained in a compact convex subset of \(X\), and \(K_i\) is a compact subset of \(Y\), (2) for each \(i,j\in I\), there exists \(k\in I\) such that \(C_i\cup C_j\subseteq C_k\), (3) for each \(i\in I\), there exists \(k\in I\) with \(\bigcap_{x\in C_k} F(x)\subseteq K_i\).
In the present paper the authors prove the following generalization of the celebrated Knaster-Kuratowski-Mazurkiewicz-Fan principle: Theorem 3.1. Let \(E\) be a Hausdorff topological vector space, \(Y\) a convex subsets of \(E\), \(X\) a non-empty subset of \(Y\), and \(F: X\to Y\) a KKM map with compactly closed (in \(Y\)) values. If \(F\) admits a coercing family, then \(\bigcap_{x\in X} F(x)\neq\emptyset\).


54H25 Fixed-point and coincidence theorems (topological aspects)
47H04 Set-valued operators
47H10 Fixed-point theorems
54C60 Set-valued maps in general topology
Full Text: DOI


[1] Allen, G., Variational inequalities, complementarity problems, and duality theorems, J. Math. Anal. Appl., 58, 1-10 (1977) · Zbl 0383.49005
[2] Ben-El-Mechaiekh, H.; Deguire, P.; Granas, A., Points fixes et coincidences pour les applications multivoques (applications de Ky Fan), C. R. Acad. Sci. Paris Sér. I Math., 295, 257-259 (1982) · Zbl 0525.47042
[3] Ben-El-Mechaiekh, H.; Deguire, P.; Granas, A., Points fixes et coincidences pour les applications multivoques II (applications de type \(φ\) et \(\varphi^*)\), C. R. Acad. Sci. Paris Sér. I Math., 295, 337-340 (1982) · Zbl 0525.47042
[4] Border, K. C., Fixed Point Theorems with Applications to Economics and Game Theory (1985), Cambridge Univ. Press · Zbl 0558.47038
[5] Browder, F. E., The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177, 283-301 (1968) · Zbl 0176.45204
[6] Dugundji, J.; Granas, A., KKM maps and variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5, 679-682 (1978) · Zbl 0396.47037
[7] Dugundji, J.; Granas, A., Fixed point theory, vol. 1, Monografie Matematyczne, vol. 61 (1982), PWN: PWN Warszawa · Zbl 0483.47038
[8] Ding, X. P.; Tan, K. K., On equilibria of non-compact generalized games, J. Math. Anal. Appl., 177, 226-238 (1993) · Zbl 0789.90008
[9] Fan, K., A generalization of Tychonoff’s fixed point theorem, Math. Ann., 142, 305-310 (1961) · Zbl 0093.36701
[10] Fan, K., A minimax inequality and applications, (Shisha, O., Inequalities, vol. III (1972), Academic Press: Academic Press New York), 103-113
[11] Fan, K., Somme properties of convex sets related to fixed point theorems, Math. Ann., 266, 519-537 (1984) · Zbl 0515.47029
[12] Florenzano, M., L’équilibre économique général transitif et intransitif: problème d’existence, Monographie du séminaire d’économétrie (1981), Presses du CNRS: Presses du CNRS Paris
[13] Haddad, G., Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math., 39, 83-100 (1981) · Zbl 0462.34048
[14] Isac, G.; Bulavski, V.; Kalashnikov, V., Exceptional families, topological degree, and complemetarity problems, J. Global Optim., 10, 207-225 (1997) · Zbl 0880.90127
[15] Isac, G.; Obuchowska, W. T., Functions without exceptional family of elements and complementarity problems, J. Optim. Theory Appl., 99, 147-163 (1998) · Zbl 0914.90252
[16] Karamardian, S., Generalized complementarity problem, J. Optim. Theory Appl., 8, 161-168 (1971) · Zbl 0218.90052
[17] Knaster, B.; Kuratowski, C.; Mazurkiewicz, S., Ein beweis des fixpunktsatszes für \(n\)-dimensionale simplexes, Fund. Math., 14, 132-137 (1929) · JFM 55.0972.01
[18] Lassonde, M., On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl., 97, 151-201 (1983) · Zbl 0527.47037
[19] Park, S., Eighty years of the Brouwer fixed point theorem, (Antipodal Points and Fixed Points. Antipodal Points and Fixed Points, RIMGARC Lecture Notes, vol. 28 (1995), Seoul National University)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.