×

Contact elements on fibered manifolds. (English) Zbl 1080.58002

Summary: For every product preserving bundle functor \(T^\mu \) on fibered manifolds, we describe the underlying functor of any order \((r,s,q), s\geq r\leq q\). We define the bundle \(K_{k,l}^{r,s,q} Y\) of \((k,l)\)-dimensional contact elements of the order \((r,s,q)\) on a fibered manifold \(Y\) and we characterize its elements geometrically. Then we study the bundle of general contact elements of type \(\mu \). We also determine all natural transformations of \(K_{k,l}^{r,s,q} Y\) into itself and of \(T(K_{k,l}^{r,s,q} Y)\) into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from \(Y\) to \(K_{k,l}^{r,s,q} Y\).

MSC:

58A20 Jets in global analysis
53A55 Differential invariants (local theory), geometric objects

References:

[1] R. Alonso: Jet manifold associated to a Weil bundle. Arch. Math. (Brno) 36 (2000), 195-199. · Zbl 1049.58007
[2] A. Cabras and I. Kolář: Prolongation of projectable tangent valued forms. To appear in Rendiconti Palermo. · Zbl 1090.53031
[3] M. Doupovec and I. Kolář: On the jets of fibered manifold morphisms. Cahiers Topo. Géom. Diff. Catégoriques XL (1999), 21-30. · Zbl 0935.58002
[4] C. Ehresmann: Oeuvres complètes et commentées. Parties I-A et I-2. Cahiers Topo. Géom. Diff. XXIV (1983). · Zbl 0561.01027
[5] I. Kolář: Affine structure on Weil bundles. Nagoya Math. J. 158 (2000), 99-106. · Zbl 0961.58002
[6] I. Kolář: Covariant approach to natural transformations of Weil functors. Comment. Math. Univ. Carolin. 27 (1986), 723-729. · Zbl 0603.58001
[7] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, 1993. · Zbl 0782.53013
[8] I. Kolář and W. M. Mikulski: Natural lifting of connections to vertical bundles. Supplemento ai Rendiconti del Circolo Mat. di Palermo, Serie II 63 (2000), 97-102. · Zbl 0978.53056
[9] W. M. Mikulski: The Natural operators lifting 1-forms on manifolds to the bundles of \(A\)-velocities. Mh. Math. 119 (1995), 63-77. · Zbl 0823.58004 · doi:10.1007/BF01292769
[10] W. M. Mikulski: Product preserving bundle functors on fibered manifolds. Arch. Math. (Brno) 32 (1996), 307-316. · Zbl 0881.58002
[11] J. Muñoz, F. J. Muriel and J. Rodríguez: Weil bundles and jet spaces. Czechoslovak Math. J. 50 (2000), 721-748. · Zbl 1079.58500 · doi:10.1023/A:1022408527395
[12] J. Tomáš: Natural operators transforming projectable vector fields to products preserving bundles. Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 59 (1999), 181-187. · Zbl 0959.58001
[13] A. Weil: Théorie des points proches sur les variétés différentielles. Collogue de C.N.R.S, Strasbourg, 1953, pp. 111-117.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.