×

Natural operators lifting vector fields to bundles of Weil contact elements. (English) Zbl 1080.58005

Summary: Let \(A\) be a Weil algebra. The bijection between all natural operators lifting vector fields from \(m\)-manifolds to the bundle functor \(K^A\) of Weil contact elements and the subalgebra of fixed elements \(SA\) of the Weil algebra \(A\) is determined and the bijection between all natural affinors on \(K^A\) and \(SA\) is deduced. Furthermore, the rigidity of the functor \(K^A\) is proved. Requisite results about the structure of \(SA\) are obtained by a purely algebraic approach, namely the existence of nontrivial \(SA\) is discussed.

MSC:

58A32 Natural bundles
12D05 Polynomials in real and complex fields: factorization
58A20 Jets in global analysis
53A55 Differential invariants (local theory), geometric objects

References:

[1] R. J. Alonso: Jet manifolds associated to a Weil bundle. Arch. Math. (Brno) 36 (2000), 195-199. · Zbl 1049.58007
[2] M. Doupovec and I. Kolář: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205-209. · Zbl 0759.53007
[3] C. Ehresmann: Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie. (1953), Colloque du C.N.R.S., Strasbourg, 97-110.
[4] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1-41. · Zbl 0813.53010
[5] I. Kolář: Affine structure on Weil bundles. Nagoya Math. J. 158 (2000), 99-106. · Zbl 0961.58002
[6] I. Kolář: On the natural operators on vector fields. Ann. Glob. Anal. Geom. 6 (1988), 109-117. · Zbl 0678.58003 · doi:10.1007/BF00133034
[7] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer Verlag, 1993. · Zbl 0782.53013
[8] I. Kolář and W. M. Mikulski: Contact elements on fibered manifolds. Czechoslovak Math. J 53(128) (2003), 1017-1030. · Zbl 1080.58002 · doi:10.1023/B:CMAJ.0000024538.28153.47
[9] M. Kureš: Weil algebras of generalized higher order velocities bundles. Contemp. Math. 288 (2001), 358-362. · Zbl 1013.58005 · doi:10.1090/conm/288/04850
[10] W. M. Mikulski: Natural differential operators between some natural bundles. Math. Bohem. 118(2) (1993), 153-161. · Zbl 0777.58004
[11] A. Morimoto: Prolongations of connections to bundles of infinitely near points. J. Differential Geom. 11 (1976), 479-498. · Zbl 0358.53013
[12] J. Muñoz, J. Rodrigues and F. J. Muriel: Weil bundles and jet spaces. Czechoslovak Math. J. 50 (2000), 721-748. · Zbl 1079.58500 · doi:10.1023/A:1022408527395
[13] J. Tomáš: On quasijet bundles. Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 187-196. · Zbl 0971.58003
[14] A. Weil: Théorie des points sur les variétés différentiables. Topologie et Géométrie Différentielle, Colloque du C.N.R.S., Strasbourg, 1953, pp. 111-117.
[15] O. Zariski and P. Samuel: Commutative algebra, Vol. II. D. Van Nostrand Company, 1960. · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.