×

Simulation algorithms for integrals of a class of sampling distributions arising in population genetics. (English) Zbl 1080.62091

Summary: Efficient stochastic algorithms are presented in order to simulate allele configurations distributed according to a family \(\pi_A\), \(0<A< \infty\), of exchangeable sampling distributions arising in population genetics. Each distribution \(\pi_A\) has two parameters \(n\) and \(k\), the sample size and the number of alleles, respectively. For \(A\to 0\), the distribution \(\pi_A\) is induced from neutral sampling, whereas for \(A\to \infty\), it is induced from Maxwell-Boltzmann sampling.
Three different Monte Carlo methods (independent sampling procedures) are provided, based on conditioning, sequential methods and a generalization of Pitmans ‘Chinese restaurant process’. Moreover, an efficient Markov chain Monte Carlo method is provided. The algorithms are applied to the homozygosity test and to the Ewens-Watterson-Slatkin test in order to test the hypothesis of selective neutrality.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
65C05 Monte Carlo methods
92D10 Genetics and epigenetics
65C40 Numerical analysis or methods applied to Markov chains
62E17 Approximations to statistical distributions (nonasymptotic)
65D30 Numerical integration
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0040-5809(72)90035-4 · Zbl 0245.92009 · doi:10.1016/0040-5809(72)90035-4
[2] Ewens W. J., Mathematical Population Genetics (1979) · Zbl 0422.92011
[3] DOI: 10.2307/1426228 · Zbl 0289.62020 · doi:10.2307/1426228
[4] Ewens W. J., Discrete Multivariate Distributions (1997)
[5] DOI: 10.1214/aos/1176350604 · Zbl 0629.62023 · doi:10.1214/aos/1176350604
[6] Patil G. P., Sankhya Series A 27 pp 271– (1965)
[7] DOI: 10.2307/2346348 · Zbl 0466.65004 · doi:10.2307/2346348
[8] Johnson N. L., Univariate Discrete Distributions, 2. ed. (1992)
[9] Stewart F. M., Genetics 86 pp 482– (1977)
[10] Tavaré S., Genetics 122 pp 705– (1989) · Zbl 1062.92046
[11] Alduos D. J., École d’été de probabilités de Saint-Flour XIII- pp 2– (1985)
[12] DOI: 10.1214/aoap/1177005647 · Zbl 0756.60006 · doi:10.1214/aoap/1177005647
[13] DOI: 10.1007/BF00275863 · Zbl 0547.92009 · doi:10.1007/BF00275863
[14] DOI: 10.1007/BF00276386 · Zbl 0636.92007 · doi:10.1007/BF00276386
[15] DOI: 10.1093/biomet/57.1.97 · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[16] DOI: 10.2307/2410454 · doi:10.2307/2410454
[17] DOI: 10.2307/3213548 · doi:10.2307/3213548
[18] Kingman J. F.C., Exchangeability in Probability and Statistics pp 97– (1982)
[19] DOI: 10.1016/0304-4149(82)90011-4 · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[20] Kingman J. F.C., Genetics 156 pp 1461– (2000) · Zbl 0393.92011
[21] Hudson R. R., Oxford Survey on Evolutionary Biology 7 pp 1– (1990)
[22] DOI: 10.1146/annurev.ge.29.120195.002153 · doi:10.1146/annurev.ge.29.120195.002153
[23] Hudson R. R., Molecular Biology Evolution 18 pp 1134– (2001) · doi:10.1093/oxfordjournals.molbev.a003884
[24] Watterson G. A., Genetics 88 pp 405– (1978) · Zbl 0845.92012
[25] DOI: 10.1017/S0016672300032560 · doi:10.1017/S0016672300032560
[26] DOI: 10.1017/S0016672300034236 · doi:10.1017/S0016672300034236
[27] Tajima F., Genetics 123 pp 585– (1989)
[28] Tajima F., Genetics 123 pp 597– (1989)
[29] Fu Y. X., Genetics 143 pp 557– (1996)
[30] Fu Y. X., Genetics 147 pp 915– (1997)
[31] Chung K. L., Markov Chains with Stationary Transition Probabilities (1967) · Zbl 0146.38401
[32] Robert C. P., Monte Carlo Statistical Methods (1999) · Zbl 0935.62005 · doi:10.1007/978-1-4757-3071-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.