×

zbMATH — the first resource for mathematics

Estimation in multiepoch regression models with different structures for studying recent crustal movements. (English) Zbl 1080.62521

MSC:
62H12 Estimation in multivariate analysis
62J05 Linear regression; mixed models
86A32 Geostatistics
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Koch K. R.: Ein statistisches Auswertverfahren für Deformationmessungen. Alg. Vermessungsnachrichten 3 (1983), 97-108.
[2] Kubáček L.: Estimation in regression models with speciale structure. J. Statist. Planning Infer. 30 (1992), 195-211. · Zbl 0761.62089
[3] Kubáček L., Kubáčková L.: A statistical approach to studying recent movements. Contr. Geophys. Inst. Slov. Acad. Sci. 22 (1992), 7-20.
[4] Kubáček L., Kubáčková L.: An indirectly measured incomplete parameter vector of recent crustal movements. Manuscripta geodaetica 17 (1992), 356-364.
[5] Kubáček L., Kubáčková L.: Optimum estimation in a growth curve model with a priori unknown variance components in geodetic networks. Journal of Geodesy 70 (1996), 599-602. · Zbl 0981.86505
[6] Kubáček L., Kubáčková L., Volaufová J.: Statistical Models With Linear Structures. Veda, Bratislava, 1995.
[7] Kubáček L., Kubáčková L.: Generalized method of least squares collocation. Aplikace matematiky 27 (1982), 446-456. · Zbl 0511.65011
[8] Kubáček L., Kubáčková L.: Elimination Transformation of an Observation Vector preserving Information on the First and Second Order Parameters. Technical Report No 11, Institute of Geodesy, University of Stuttgart, 1990.
[9] Kubáčková L.: Foundations of Experimental Data Analysis. CRC Press, Boca Raton-Ann Arbor-London-Tokyo 1992. · Zbl 0875.62016
[10] Kubáčková L., Kubáček L.: A group of gravimeters-stochastical problems and their solutions. Geodesy and Physics of the Earth (H. Montag, Ch. Reiberg Springer 1993, 275-278.
[11] Moritz H.: Least-square collocation. Deutsche geodätische Kommission bei der Bayer. Akad. d. Wissenschaften, Reihe A, Heft 75, München 1973.
[12] Rao C. R., Mitra K. S.: Generalized Inverse of Matrices and Its Application. J. Wiley, New York 1971. · Zbl 0236.15004
[13] Rao, C R., Kleffe J.: Estimation of Variance Components and Applications. North-Holland, Amsterdam-Oxford-New York-Tokyo 1988. · Zbl 0645.62073
[14] Schaffrin B.: New estimation/prediction techniques for the determination of crustal deformations in the presence of prior geophysical information. Tectonophysics 130 (1986), 361-367.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.