×

Additive Schwarz method for mortar discretization of elliptic problems with \(P_{1}\) nonconforming finite elements. (English) Zbl 1080.65118

The paper presents an additive Schwarz preconditioner for nonconforming mortar finite element discretization of a second-order elliptic problem in two dimensions with arbitrary large jumps of the discontinuous coefficients in subdomains.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
35R05 PDEs with low regular coefficients and/or low regular data
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Y. Achdou, Y. A. Kuznetsov, and O. Pironneau, Substructuring preconditioners for theQ1mortar element method, Numer. Math., 71 (1995), pp. 419–449. · Zbl 0840.65122
[2] Y. Achdou, Y. Maday, and O. B. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions, SIAM J. Numer. Anal., 36 (1999), pp. 551–580. · Zbl 0931.65110
[3] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math., 84 (1999), pp. 173–197. First published as a technical report in 1994. · Zbl 0944.65114
[4] F. Ben Belgacem and Y. Maday, The mortar element method for three-dimensional finite elements, RAIRO Modél. Math. Anal. Numér., 31 (1997), pp. 289–302. · Zbl 0868.65082
[5] C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991), Pitman Res. Notes Math. Ser., Vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 13–51. · Zbl 0797.65094
[6] P. E. Bjørstad, M. Dryja, and T. Rahman, Additive Schwarz methods for elliptic mortar finite element problems, Numer. Math., 95 (2003), pp. 427–457. · Zbl 1036.65107
[7] P. E. Bjørstad and O. B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), pp. 1097–1120. · Zbl 0615.65113
[8] D. Braess, W. Dahmen, and C. Wieners, A multigrid algorithm for the mortar finite element method, SIAM J. Numer. Anal., 37 (1999), pp. 48–69. · Zbl 0942.65139
[9] S. C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods, Math. Comp., 65 (1996), pp. 897–921. · Zbl 0859.65124
[10] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, Vol. 15, Springer-Verlag, New York, 1994. · Zbl 0804.65101
[11] S. C. Brenner and L.-Y. Sung, Balancing domain decomposition for nonconforming plate elements, Numer. Math., 83 (1999), pp. 25–52. · Zbl 0937.74060
[12] X.-C. Cai, M. Dryja, and M. Sarkis, Overlapping nonmatching grid mortar element methods for elliptic problems, SIAM J. Numer. Anal., 36 (1999), pp. 581–606. · Zbl 0927.65131
[13] M. A. Casarin and O. B. Widlund, A hierarchical preconditioner for the mortar finite element method, Electron. Trans. Numer. Anal., 4 (1996), pp. 75–88. · Zbl 0870.65105
[14] M. Dryja, An iterative substructuring method for elliptic mortar finite element problems with a new coarse space, East-West J. Numer. Math., 5 (1997), pp. 79–98. · Zbl 0902.65068
[15] M. Dryja, A. Gantner, O. B. Widlund, and B. I. Wohlmuth, Multilevel additive Schwarz preconditioner for nonconforming mortar finite element methods, J. Numer. Math., 12 (2004), pp. 23–38. · Zbl 1050.65048
[16] M. Dryja, B. F. Smith, and O. B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31 (1994), pp. 1662–1694. · Zbl 0818.65114
[17] E. G. D’yakonov, Optimization in Solving Elliptic Problems, CRC Press, Boca Raton, FL, 1996. Translated from the 1989 Russian original, Translation edited and with a preface by Steve McCormick.
[18] J. Gopalakrishnan and J. E. Pasciak, Multigrid for the mortar finite element method, SIAM J. Numer. Anal., 37 (2000), pp. 1029–1052. · Zbl 0951.65134
[19] R. Hoppe, T. Rahman, and X. Xu, Additive Schwarz Method for the mortar Crouzeix–Raviart element, in R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau, O. Widlund, and J. Xu (eds), Domain Decomposition Methods in Science and Engineering, Lect. Notes in Comput. Sci. and Eng., Vol. 40, Springer Verlag, 2004, pp. 335–342. · Zbl 1067.65050
[20] C. Lacour and Y. Maday, La méthode des éléments avec joint appliquée aux méthodes d’approximations discrete Kirchhoff triangles, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), pp. 1237–1242. · Zbl 0916.73058
[21] P. Le Tallec, Neumann-Neumann domain decomposition algorithms for solving 2D elliptic problems with nonmatching grids, East-West J. Numer. Math., 1 (1993), pp. 129–146. · Zbl 0835.65135
[22] L. Marcinkowski, The mortar element method with locally nonconforming elements, BIT, 39 (1999), pp. 716–739. · Zbl 0944.65115
[23] L. Marcinkowski, Domain decomposition methods for mortar finite element discretizations of plate problems, SIAM J. Numer. Anal., 39 (2001), pp. 1097–1114. · Zbl 1017.74076
[24] L. Marcinkowski, A mortar element method for some discretizations of a plate problem, Numer. Math., 93 (2002), pp. 361–386. · Zbl 1036.74046
[25] M. Sarkis, Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements, Numer. Math., 77 (1997), pp. 383–406. · Zbl 0884.65119
[26] Z.-C. Shi, X. Xu, and J. Chen, Multigrid for the mortar-type nonconforming element method for nonsymmetric and indefinite problems, in Domain decomposition methods in science and engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, Internat. Center Numer. Methods Eng. (CIMNE), Barcelona, 2002, pp. 279–286. · Zbl 1026.65101
[27] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 1996. · Zbl 0857.65126
[28] D. Stefanica and A. Klawonn, The FETI method for mortar finite elements, in Eleventh International Conference on Domain Decomposition Methods (London, 1998), DDM.org, Augsburg, 1999, pp. 121–129.
[29] B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition, Lectures Notes in Computational Science and Engineering, Vol. 17, Springer-Verlag, Berlin, 2001. · Zbl 0966.65097
[30] B. I. Wohlmuth and R. H. Krause, A multigrid method based on the unconstrained product space for mortar finite element discretizations, SIAM J. Numer. Anal., 39 (2001), pp. 192–213. · Zbl 0992.65142
[31] X. Xu and J. Chen, Multigrid for the mortar element method forP1 nonconforming element, Numer. Math., 88 (2001), pp. 381–398. · Zbl 0989.65141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.