×

Numerical solution for the fractional replicator equation. (English) Zbl 1080.65536


MSC:

65K05 Numerical mathematical programming methods
91A22 Evolutionary games
34A99 General theory for ordinary differential equations
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1017/CBO9781139173179 · Zbl 0914.90287
[2] Maynard Smith J., Evolution and the Theory of Games (1981) · Zbl 0526.90102
[3] Weibull J. W., Evolutionary Game Theory (1995) · Zbl 0879.90206
[4] Hofbauer J., Evolutionary Game Dynamics (2003) · Zbl 1049.91025
[5] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008
[6] Miller K. S., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002
[7] DOI: 10.1007/978-3-7091-2664-6_5
[8] Samko S. G., Integrals and Derivatives of the Fractional Order and Some of Their Applications (1987) · Zbl 0617.26004
[9] DOI: 10.1016/S0362-546X(97)00525-7 · Zbl 0934.34055
[10] DOI: 10.1111/j.1365-246X.1967.tb02303.x
[11] K. Diethelm and A. Freed, Scientific Computing in Chemical Engineering II – Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties, eds. F. Keil (Springer, Heidelberg, 1999) pp. 217–224.
[12] K. Diethelm and A. D. Freed, Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz–Billing–Preis 1998, eds. S. Heinzel and T. Plesser (Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, 1999) pp. 57–71.
[13] El-Sayed A. M. A., Comput. Appl. Math. 23 pp 33–
[14] El-Mesiry E. M., Appl. Math. Comput. 160 pp 683–
[15] Diethelm K., Numerical Analysis Report 379 (2001)
[16] K. Diethelm, Proc. 5th Hellenic-European Conf. Computer Mathematics and Its Applications, ed. E. A. Lipitakis (LEA Press, Athens, 2002) pp. 117–122.
[17] DOI: 10.1023/A:1016592219341 · Zbl 1009.65049
[18] DOI: 10.1023/B:NUMA.0000027736.85078.be · Zbl 1055.65098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.