zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical behaviors of a large class of general delayed neural networks. (English) Zbl 1080.68615
Summary: Research of delayed neural networks with varying self-inhibitions, interconnection weights, and inputs is an important issue. In the real world, self-inhibitions, interconnection weights, and inputs should vary as time varies. In this letter, we discuss a large class of delayed neural networks with periodic inhibitions, interconnection weights, and inputs. We prove that if the activation functions are of Lipschitz type and some set of inequalities, for example, the set of inequalities 3.1 in theorem 1, is satisfied, the delayed system has a unique periodic solution, and any solution will converge to this periodic solution. We also prove that if either set of inequalities 3.20 in theorem 2 or 3.23 in theorem 3 is satisfied, then the system is exponentially stable globally. This class of delayed dynamical systems provides a general framework for many delayed dynamical systems. As special cases, it includes delayed Hopfield neural networks and cellular neural networks as well as distributed delayed neural networks with periodic self-inhibitions, interconnection weights, and inputs. Moreover, the entire discussion applies to delayed systems with constant self-inhibitions, interconnection weights, and inputs.

68T05Learning and adaptive systems
Full Text: DOI